Menu

Blog

Archive for the ‘nanotechnology’ category: Page 56

Nov 29, 2022

Seemingly Impossible: Nanostructure Compresses Light 10,000 Times Thinner Than a Human Hair

Posted by in categories: biotech/medical, chemistry, nanotechnology

Until recently, physicists widely believed that it was impossible to compress light below the so-called diffraction limit, except when utilizing metal nanoparticles, which also absorb light. As a result, it seemed to be impossible to compress light strongly in dielectric materials like silicon, which are essential for information technologies and had the significant advantage of not absorbing light. Interestingly, it was theoretically shown that the diffraction limit does not apply to dielectrics back in 2006. However, no one has been able to demonstrate this in the actual world due to the fact that it requires such complex nanotechnology that no one has yet been able to create the required dielectric nanostructures.

A research team from the Technical University of Denmark has created a device known as a “dielectric nanocavity” that successfully concentrates light in a volume 12 times smaller than the diffraction limit. The finding is groundbreaking in optical research and was recently published in the journal Nature Communications.

Nature Communications is a peer-reviewed, open access, multidisciplinary, scientific journal published by Nature Research. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Nov 29, 2022

How to fire projectiles through materials without breaking anything

Posted by in categories: nanotechnology, particle physics

When charged particles are shot through ultra-thin layers of material, sometimes spectacular micro-explosions occur, and sometimes the material remains almost intact. The reasons for this have now been explained by researchers at the TU Wien.

It sounds a bit like a : Some materials can be shot through with fast, electrically charged ions without exhibiting holes afterwards. What would be impossible at the macroscopic level is allowed at the level of individual particles. However, not all materials behave the same in such situations—in recent years, different research groups have conducted experiments with very different results.

At the TU Wien (Vienna, Austria), it has now been possible to find a detailed explanation of why some materials are perforated and others are not. This is interesting, for example, for the processing of thin membranes, which are supposed to have tailor-made nano-pores in order to trap, hold or let through very specific atoms or molecules there.

Nov 28, 2022

Light-Powered Nanomaterial Catalyst Could Be Key for Hydrogen Economy

Posted by in categories: economics, nanotechnology, sustainability

A key light-activated nanomaterial for the hydrogen economy has been engineered by researchers at Rice University. Using only inexpensive raw materials, scientists created a scalable catalyst that needs only the power of light to convert ammonia into clean-burning hydrogen fuel.

“This discovery paves the way for sustainable, low-cost hydrogen that could be produced locally rather than in massive centralized plants.” —

Continue reading “Light-Powered Nanomaterial Catalyst Could Be Key for Hydrogen Economy” »

Nov 24, 2022

Nano-robot antibodies that fight cancer enter first human drug trial

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Scientists in Israel have created the first nano-robot antibodies designed to fight cancer. The first human trial for the new nano-robots will start soon, and it will determine just how effective the antibodies are. What is special about these particular antibodies, too, is that they are programmed to decide whether cells surrounding tumors are “bad” or “good.”

The trial is currently underway in Australia and if it goes according to plan, the nano-robot antibodies will be able to fight cells around tumors that can help the tumor while also boosting the capability of the cells inhibiting the growth of the cancerous cells. The antibodies were invented by Professor Yanay Ofran and are based on human and animal antibodies.

The goal of these nano-robot antibodies is to unlock the full potential that antibodies offer, Ofran says. Currently, the use of antibodies in medicine only utilizes a fraction of the capabilities offered by these natural disease fighters. As such, finding a way to maximize their capability has been a long-term goal for quite a while.

Nov 23, 2022

Spin correlation between paired electrons demonstrated

Posted by in categories: nanotechnology, particle physics, quantum physics

Physicists at the University of Basel have experimentally demonstrated for the first time that there is a negative correlation between the two spins of an entangled pair of electrons from a superconductor. For their study, the researchers used spin filters made of nanomagnets and quantum dots, as they report in the scientific journal Nature.

The entanglement between two particles is among those phenomena in that are hard to reconcile with everyday experiences. If entangled, certain properties of the two particles are closely linked, even when far apart. Albert Einstein described entanglement as a “spooky action at a distance.” Research on entanglement between light particles (photons) was awarded this year’s Nobel Prize in Physics.

Two can be entangled as well—for example in their spins. In a superconductor, the electrons form so-called Cooper pairs responsible for the lossless electrical currents and in which the individual spins are entangled.

Nov 23, 2022

Journal of Experimental and Theoretical Physics

Posted by in categories: computing, information science, nanotechnology, quantum physics

Circa 2020 Basically this means a magnetic transistor can have not only quantum properties but also it can have nearly infinite speeds for processing speeds. Which means we can have nanomachines with near infinite speeds eventually.


Abstract The discovery of spin superfluidity in antiferromagnetic superfluid 3He is a remarkable discovery associated with the name of Andrey Stanislavovich Borovik-Romanov. After 30 years, quantum effects in a magnon gas (such as the magnon Bose–Einstein condensate and spin superfluidity) have become quite topical. We consider analogies between spin superfluidity and superconductivity. The results of quantum calculations using a 53-bit programmable superconducting processor have been published quite recently[1]. These results demonstrate the advantage of using the quantum algorithm of calculations with this processor over the classical algorithm for some types of calculations. We consider the possibility of constructing an analogous (in many respecys) processor based on spin superfluidity.

Nov 22, 2022

Novel nanowire fabrication technique paves way for next generation spintronics

Posted by in categories: chemistry, computing, nanotechnology, particle physics

9 nov 2022.


The challenge of fabricating nanowires directly on silicon substrates for the creation of the next generation of electronics has finally been solved by researchers from Tokyo Tech. Next-generation spintronics will lead to better memory storage mechanisms in computers, making them faster and more efficient.

As our world modernizes faster than ever before, there is an ever-growing need for better and faster electronics and computers. Spintronics is a new system which uses the spin of an electron, in addition to the charge state, to encode data, making the entire system faster and more efficient. Ferromagnetic nanowires with high coercivity (resistance to changes in magnetization) are required to realize the potential of spintronics. Especially L 10-ordered (a type of crystal structure) cobalt-platinum (CoPt) nanowires.

Conventional fabrication processes for L 10-ordered nanowires involve heat treatment to improve the physical and chemical properties of the material, a process called annealing on the crystal substrate; the transfer of a pattern onto the substrate through lithography; and finally the chemical removal of layers through a process called etching. Eliminating the etching process by directly fabricating nanowires onto the silicon substrate would lead to a marked improvement in the fabrication of spintronic devices. However, when directly fabricated nanowires are subjected to annealing, they tend to transform into droplets as a result of the internal stresses in the wire.

Nov 21, 2022

A combination of ultrasound and nanobubbles allows cancerous tumors to be destroyed without invasive treatments

Posted by in categories: biotech/medical, engineering, nanotechnology

A new technology developed at Tel Aviv University makes it possible to destroy cancerous tumors in a targeted manner, via a combination of ultrasound and the injection of nanobubbles into the bloodstream. According to the research team, unlike invasive treatment methods or the injection of microbubbles into the tumor itself, this latest technology enables the destruction of the tumor in a non-invasive manner.

The study was conducted under the leadership of doctoral student Mike Bismuth from the lab of Dr. Tali Ilovitsh at Tel Aviv University’s Department of Biomedical Engineering, in collaboration with Dr. Dov Hershkovitz of the Department of Pathology. Prof. Agata Exner from Case Western Reserve University in Cleveland also participated in the study. The study was published in the journal Nanoscale.

Dr. Tali Ilovitsh says that their “new technology makes it possible, in a relatively simple way, to inject nanobubbles into the bloodstream, which then congregate in the area of the cancerous . After that, using a low-frequency ultrasound, we explode the nanobubbles, and thereby the tumor.”

Nov 21, 2022

Researchers control individual light quanta at very high speed

Posted by in categories: computing, mobile phones, nanotechnology, quantum physics

A team of German and Spanish researchers from Valencia, Münster, Augsburg, Berlin and Munich have succeeded in controlling individual light quanta to an extremely high degree of precision. In Nature Communications, the researchers report how, by means of a soundwave, they switch individual photons on a chip back and forth between two outputs at gigahertz frequencies. This method, demonstrated here for the first time, can now be used for acoustic quantum technologies or complex integrated photonic networks.

Light waves and soundwaves form the technological backbone of modern communications. While glass fibers with laser light form the World Wide Web, nanoscale soundwaves on chips process signals at gigahertz frequencies for wireless transmission between smartphones, tablets or laptops. One of the most pressing questions for the future is how these technologies can be extended to , to build up secure (i.e., tap-free) quantum communication networks.

“Light quanta or photons play a very central role in the development of quantum technologies,” says physicist Prof. Hubert Krenner, who heads the study in Münster and Augsburg. “Our team has now succeeded in generating on a chip the size of a thumbnail and then controlling them with unprecedented precision, precisely clocked by means of soundwaves,” he says.

Nov 21, 2022

Ferromagnetic Nanoparticles Have High Tumor Penetration

Posted by in category: nanotechnology

In an article published in PNAS, researchers introduced the magnetotactic bacteria (MTB) Mms6 proteins into a reverse micelle structure to create a nanoreactor that resembled a magnetosome. This magnetosome-inspired nanoscale chamber synthesized a single domain’s magnetic nanoparticles (MNPs).

Page 56 of 257First5354555657585960Last