Menu

Blog

Archive for the ‘biotech/medical’ category: Page 136

Sep 19, 2023

Super-Sensitive PAM Ensures Image Quality with Low-Power Light Source

Posted by in categories: biotech/medical, futurism

A multispectral, super-low-dose photoacoustic microscopy (SLD-PAM) system developed by City University of Hong Kong (CUHK) achieves significantly higher sensitivity than traditional optical resolution photoacoustic imaging.

By providing an exceptionally high level of sensitivity, SLD-PAM could help broaden the use of photoacoustic microscopy in biomedical applications. In the future, it could translate to clinical settings; for example, it could be used for ophthalmic exams where a low-power laser is preferred for the patient’s safety and comfort. Long-term monitoring of pharmacokinetics or blood flow also requires low-dose imaging to alleviate perturbation to tissue function.

Sep 18, 2023

This is Apptronik’s humanoid robot, Apollo

Posted by in categories: biotech/medical, mobile phones, robotics/AI, space

General-purpose automation could radically improve society by vastly accelerating construction, manufacturing, and R&D. Just as the scale and complexity of today’s cities would have been unimaginable 200 years ago, we may see a similar factor of value growth over the next 50 years. Quality of life may dramatically increase as well. I envision that billions could be lifted out of poverty and the average person may live like today’s wealthiest top 1%. Space colonization might be made feasible. Keep in mind these projections are highly speculative. Nonetheless, it is worth considering the remarkable possibilities! #automation #tech #robotics #futurism


The rise of humanoid robots didn’t happen overnight, but a kind of perfect storm has accelerated the phenomenon over the past year and change. The foundation, of course, is decades of research.

Toiling away in research facilities and R&D departments laid the ground work for a new generation of technology. The necessary software and components have come a long way, driven by innovations in industrial robotics, autonomous driving and even the smartphone industry.

Continue reading “This is Apptronik’s humanoid robot, Apollo” »

Sep 18, 2023

Implantable device could enable injection-free control of diabetes

Posted by in category: biotech/medical

One promising approach to treating type 1 diabetes is implanting pancreatic islet cells that can produce insulin when needed, which can free patients from giving themselves frequent insulin injections. However, one major obstacle to this approach is that once the cells are implanted, they eventually run out of oxygen and stop producing insulin.

To overcome that hurdle, MIT engineers have designed a new implantable device that not only carries hundreds of thousands of insulin-producing islet cells, but also has its own on-board oxygen factory, which generates oxygen by splitting water vapor found in the body.

The researchers showed that when implanted into diabetic mice, this device could keep the mice’s blood glucose levels stable for at least a month. The researchers now hope to create a larger version of the device, about the size of a stick of chewing gum, that could eventually be tested in people with type 1 diabetes.

Sep 18, 2023

Removing the barrier surrounding solid tumors clears path for T cells, study shows

Posted by in category: biotech/medical

While immunotherapies have shown great promise in treating blood cancers, most clinical trials aimed at treating solid tumors such as pancreatic or lung cancer have failed. Researchers have long thought that solid tumors’ resistance to treatment is due to the tumor microenvironment—the cells and matrix that surround solid tumors—but the exact mechanisms behind this blockade were unclear, until now.

In a new study, University of Pennsylvania researchers reveal how the microenvironment prevents T cells from attacking tumors. Using mouse models, they showed that cancer-associated fibroblasts along with extracellular matrix within the create a physical barrier to T cell entry, and these cells also actively suppress T cell function. When the researchers used CAR T cells to target and remove these fibroblasts, rather than targeting the tumor cells themselves, T cells were able to infiltrate and attack the tumor.

“The physical barrier and immunosuppressive environment derived from cancer-associated fibroblasts limits or traps T cells and prevents them from entering into the tumor,” says first author Zebin Xiao, a physician and postdoctoral researcher in the School of Veterinary Medicine. “We showed that targeting those fibroblasts can disrupt that barrier and has a very great tumor inhibition effect.”

Sep 18, 2023

Researchers discover possible new treatment for triple-negative breast cancer

Posted by in category: biotech/medical

Zachary Schug, Ph.D., assistant professor in the Molecular and Cellular Oncogenesis Program of the Ellen and Ronald Caplan Cancer Center at The Wistar Institute, has published a new paper in the journal Nature Cancer. Schug’s paper, titled “Acetate acts as a metabolic immunomodulator by bolstering T-cell effector function and potentiating antitumor immunity in breast cancer,” demonstrates a double-acting mechanism for fighting a particularly aggressive, difficult-to-treat form of breast cancer. Schug’s research shows how silencing a certain gene, ACSS2, may improve existing treatments for patients.

Triple-negative , or TNBC, affects 10–15% of patients with breast cancer in the US. TNBC is called “triple-negative” because the cancer lacks an , a , and a HER2 (human epidermal growth factor) receptor. The absence of any of these receptors—receptors that when present in other forms of breast cancer, can be effectively targeted during treatment—makes treating TNBC quite difficult, and patients with TNBC have limited treatment options.

TNBC’s notorious aggression makes the technical challenge of finding a reliably effective treatment target all the more serious: compared to other breast cancers, TNBC grows faster and resists treatment more stubbornly. All these factors contribute to the fact that TNBC patients suffer from worse prognoses.

Sep 18, 2023

A modern digital light processing technology to 3D print microfluidic chips

Posted by in categories: 3D printing, bioengineering, biotech/medical, chemistry, computing

Conventional manufacturing methods such as soft lithography and hot embossing processes can be used to bioengineer microfluidic chips, albeit with limitations, including difficulty in preparing multilayered structures, cost-and labor-consuming fabrication processes as well as low productivity.

Materials scientists have introduced digital light processing as a cost-effective microfabrication approach to 3D print microfluidic chips, although the fabrication resolution of these microchannels are limited to a scale of sub-100 microns.

In a new report published in Microsystems and Nanoengineering, Zhuming Luo and a scientific team in , and chemical engineering in China developed an innovative digital light processing method.

Sep 18, 2023

Innovative Gene Screening in Human Tissue May Unlock Autism’s Secrets

Posted by in categories: biotech/medical, genetics, neuroscience

Summary: Researchers pioneered a groundbreaking method called “CHOOSE” to investigate genes tied to autism spectrum disorder (ASD) within human tissue. This technique allows for simultaneous examination of key transcriptional regulator genes linked to autism in a single organoid.

Utilizing CHOOSE, the team pinpointed mutations in 36 genes known to heighten autism risk, shedding light on how they influence brain development. The revelations from these organoids mirrored clinical observations, underscoring the potential of this method in advancing our understanding of neurodevelopmental disorders.

Sep 18, 2023

AI now used in the fight against global infectious diseases

Posted by in categories: biotech/medical, health, robotics/AI

Our hope is for COVID-19 to never repeat itself,’ said the new program’s executive director.

A program run by a Canadian university is seeking to improve global health care for the most vulnerable by examining how artificial intelligence (AI) can enhance readiness for infectious disease epidemics in the Global South.

This is according to a report by CTV News published on Wednesday.

Continue reading “AI now used in the fight against global infectious diseases” »

Sep 18, 2023

The surprising origin of a deadly hospital infection

Posted by in category: biotech/medical

Hospital staff spend a significant amount of time working to protect patients from acquiring infections while they are being cared for in the hospital. They employ various methods from hand hygiene to isolation rooms to rigorous environmental sanitation. Despite these efforts, hospital-onset infections still occur—the most common of which is caused by the bacterium Clostridioides difficile, or C. diff, the culprit of almost half a million infections in the U.S. each year.

Surprising findings from a study in Nature Medicine suggest that the burden of C. diff infection may be less a matter of hospital transmission and more a result of characteristics associated with the themselves.

The study team, led by Evan Snitkin, Ph.D. and Vincent Young, M.D., Ph.D., both members of the Departments of Microbiology & Immunology and Internal Medicine/Infectious Diseases at University of Michigan Medical School and Mary Hayden, M.D. of Rush University Medical Center, leveraged ongoing epidemiological studies focused on hospital-acquired infections that enabled them to analyze daily fecal samples from every patient within the at Rush University Medical Center over a nine-month period.

Sep 18, 2023

David Liu startup to focus on getting CRISPR therapy to hard-to-reach cells

Posted by in category: biotech/medical

A startup by prominent biochemist David Liu seeks to turn hollowed out viruses into CRISPR-delivery vehicles.

Page 136 of 2,414First133134135136137138139140Last