Menu

Blog

Page 1234

Oct 19, 2023

Microsoft Repositions 7TB ‘Project Silica’ Glass Media as a Cloud Storage Solution

Posted by in categories: computing, sustainability

Microsoft has decided its Project Silica storage would be an efficient and sustainable choice for its cloud data centers, with the 7 TB glass media touted to last 10,000 years.

Oct 19, 2023

Neural Networks’ Unique Perceptions: Decoding Machine vs. Human Sensory Recognition

Posted by in category: robotics/AI

Summary: A new study delves into the enigmatic realm of deep neural networks, discovering that while these models can identify objects akin to human sensory systems, their recognition strategies diverge from human perception. When prompted to generate stimuli similar to a given input, the networks often produced unrecognizable or distorted images and sounds.

This indicates that neural networks cultivate their distinct “invariances”, differing starkly from human perceptual patterns. The research offers insights into evaluating models that mimic human sensory perceptions.

Oct 19, 2023

Physicists Use Quantum Mechanics to Pull Energy out of Nothing

Posted by in categories: energy, quantum physics

“This is real physics, not science fiction”. Two physics experiments showed that it is possible to produce energy inside an energy vacuum.


The quantum energy teleportation protocol was proposed in 2008 and largely ignored. Now two independent experiments have shown that it works.

Oct 19, 2023

Nonclassical Advantage in Metrology Established via Quantum Simulations of Hypothetical Closed Timelike Curves

Posted by in category: quantum physics

We construct a metrology experiment in which the metrologist can sometimes amend the input state by simulating a closed timelike curve, a worldline that travels backward in time. The existence of closed timelike curves is hypothetical. Nevertheless, they can be simulated probabilistically by quantum-teleportation circuits. We leverage such simulations to pinpoint a counterintuitive nonclassical advantage achievable with entanglement. Our experiment echoes a common information-processing task: A metrologist must prepare probes to input into an unknown quantum interaction. The goal is to infer as much information per probe as possible. If the input is optimal, the information gained per probe can exceed any value achievable classically. The problem is that, only after the interaction does the metrologist learn which input would have been optimal.

Oct 19, 2023

Ushering in the era of light-powered ‘multi-level memories’

Posted by in categories: computing, engineering

We live in an era of data deluge. The data centers that are operated to store and process this flood of data use a lot of electricity, which has been called a major contributor to environmental pollution. To overcome this situation, polygonal computing systems with lower power consumption and higher computation speed are being researched, but they are not able to handle the huge demand for data processing because they operate with electrical signals, just like conventional binary computing systems.

Dr. Do Kyung Hwang of the Center for Opto-Electronic Materials & Devices of the Korea Institute of Science and Technology (KIST) and Professor Jong-Soo Lee of the Department of Energy Science & Engineering at Daegu Gyeongbuk Institute of Science and Technology (DGIST) have jointly developed a new zero-dimensional and two-dimensional (2D-0D) semiconductor artificial junction material and observed the effect of a next-generation memory powered by light.

Transmitting data between the computing and storage parts of a multi-level computer using light rather than can dramatically increase processing speed.

Oct 19, 2023

Researchers test seafloor fiber optic cable as an earthquake early warning system

Posted by in category: electronics

One of the biggest challenges for earthquake early warning systems (EEW) is the lack of seismic stations located offshore of heavily populated coastlines, where some of the world’s most seismically active regions are located.

In a new study published in The Seismic Record, researchers show how unused telecommunications fiber can be transformed for offshore EEW.

Jiuxun Yin, a Caltech researcher now at SLB, and colleagues used 50 kilometers of a submarine telecom cable running between the United States and Chile, sampling at 8,960 channels along the cable for four days. The technique, called Distributed Acoustic Sensing or DAS, uses the tiny internal flaws in a long optical fiber as thousands of seismic sensors.

Oct 19, 2023

Vocal functional flexibility in the grunts of young chimpanzees

Posted by in categories: biotech/medical, evolution, genetics

Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the ‘neutral mutation–random drift’ hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist–selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?

Oct 19, 2023

Moderating the neutralist–selectionist debate: exactly which propositions are we debating, and which arguments are valid?

Posted by in categories: biotech/medical, evolution, genetics

Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the ‘neutral mutation–random drift’ hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist–selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?

Oct 19, 2023

Fast radio bursts trigger aftershocks resembling earthquakes, but not solar flares

Posted by in categories: energy, space

ABSTRACT. The production mechanism of repeating fast radio bursts (FRBs) is still a mystery, and correlations between burst occurrence times and energies may provide important clues to elucidate it. While time correlation studies of FRBs have been mainly performed using wait time distributions, here we report the results of a correlation function analysis of repeating FRBs in the 2D space of time and energy. We analyse nearly 7,000 bursts reported in the literature for the three most active sources of FRB 20121102A, 20201124A, and 20220912A, and find the following characteristics that are universal in the three sources. A clear power-law signal of the correlation function is seen, extending to the typical burst duration (∼ 10 msec) towards shorter time intervals (Δt). The correlation function indicates that every single burst has about a 10–60 per cent chance of producing an aftershock at a rate decaying by a power law as ∝ (Δt)−p with p = 1.5–2.5, like the Omori–Utsu law of earthquakes. The correlated aftershock rate is stable regardless of source activity changes, and there is no correlation between emitted energy and Δt. We demonstrate that all these properties are quantitatively common to earthquakes, but different from solar flares in many aspects, by applying the same analysis method for the data on these phenomena. These results suggest that repeater FRBs are a phenomenon in which energy stored in rigid neutron star crusts is released by seismic activity. This may provide a new opportunity for future studies to explore the physical properties of the neutron star crust.

Oct 19, 2023

A highly integrated bionic hand with neural control and feedback for use in daily life

Posted by in categories: cyborgs, neuroscience, transhumanism

A neuromusculoskeletal hand prosthesis grants long-term stable neural control, sensory feedback, and skeletal attachment.