Menu

Blog

Archive for the ‘neuroscience’ category: Page 74

Sep 2, 2023

Michael Levin: “Non-neural, developmental bioelectricity as a precursor for cognition”

Posted by in categories: biotech/medical, evolution, neuroscience

Plenary Talk by Michael Levin on “Non-neural, developmental bioelectricity as a precursor for cognition: Evolution, synthetic organisms, and biomedicine” at the Virtual Miniature Brain Machinery Retreat, September 16, 2021. Introduction by William Baker.

Michael Levin.
Director of the Allen Discovery Center.
Tufts University.

Continue reading “Michael Levin: ‘Non-neural, developmental bioelectricity as a precursor for cognition’” »

Sep 2, 2023

The Hidden Brain Connections Between Our Hands and Tongues

Posted by in category: neuroscience

Sticking out your tongue while doing delicate work with your hands reveals a history of evolutionary relationships.

Sep 2, 2023

Restoring A Person’s Voice Using A Brain-Computer Interface

Posted by in categories: biotech/medical, computing, neuroscience

Being able to vocalize is one of the most essential elements of the human experience, with infants expected to start babbling their first words before they’re one year old, and much of their further life revolving around interacting with others using vocalizations involving varying degrees of vocabulary and fluency. This makes the impairment or loss of this ability difficult to devastating, as is the case with locked-in syndrome (LIS), amyotrophic lateral sclerosis (ALS) and similar conditions, where talking and vocalizing has or will become impossible.

In a number of concurrent studies, the use of a brain-computer interface (BCI) is investigated to help patients suffering from LIS (Sean L. Metzger et al., 2023) and ALS (Francis R. Willett et al., 2023) to regain their speaking voice. Using the surgically implanted microelectrode arrays (Utah arrays) electrical impulses pertaining to the patient’s muscles involved in speaking are recorded and mapped to phonemes, which are the elements that make up speech. Each of these phonemes requires a specific configuration of the muscles of the vocal tract (e.g. lips, tongue, jaw and larynx), which can be measured with a fair degree of accuracy.

In the case of the study by Sean L. Metzger et al. as recently published in Nature, the accompanying research article on the University of California San Francisco website details the story of their patient: Ann. At the age of 30, Ann suffered a brainstem stroke which rendered her essentially fully paralyzed. As an LIS patient she lacked for a long time even the ability to move her facial muscles.

Sep 1, 2023

Stanford Medicine-led study finds genetic factor fends off Alzheimer’s and Parkinson’s

Posted by in categories: biotech/medical, genetics, neuroscience

A massive study of medical and genetic data shows that people with a particular version of a gene involved in immune response had a lower risk of Alzheimer’s and Parkinson’s disease.

Sep 1, 2023

New insights on why epilepsy develops, potential treatments in world’s largest genetic study

Posted by in categories: biotech/medical, genetics, neuroscience

Specific changes in our DNA that increase the risk of developing epilepsy have been discovered, in the largest genetic study of its kind for epilepsy coordinated by the International League Against Epilepsy, which includes scientists from the University of Melbourne and WEHI (Walter and Eliza Hall Institute of Medical Research).

Published today in Nature Genetics, this research advances our understanding of why epilepsy develops and could inform the development of new epilepsy treatments. The research was produced by the International League Against Epilepsy (ILAE) Consortium on Complex Epilepsies.

Epilepsy is a common brain disorder estimated to effect more than 50 million people worldwide, where nerve cell activity in the brain is disturbed, causing seizures. It has a genetic component that sometimes runs in families. In this study, researchers compared the DNA from almost 30,000 people with epilepsy to the DNA of 52,500 people without epilepsy from around the world. The differences between the two groups highlighted areas of DNA that may be involved in the development of epilepsy.

Aug 31, 2023

A new biological mechanism to regenerate and repair myelin

Posted by in categories: biological, neuroscience

A neonatal hypoxic-injury animal model revealed that CK2α mediated Daam2 phosphorylation, which plays a protective role in developmental and behavioral recovery after neonatal hypoxia, a form of brain injury seen in cerebral palsy and other conditions. Additionally, it facilitates remyelination after white matter injury in adult animals.

Together, these findings have identified a novel regulatory node connecting CK2α and Daam2 in the Wnt pathway that regulates stage-specific oligodendrocyte development and offers insights into a new biological mechanism to regenerate myelin.

“This study opens exciting therapeutic avenues we could develop in the future to repair and restore myelin, which has the potential to alleviate and treat several neurological issues that are currently untreatable,” Lee said.

Aug 31, 2023

Analog and digital: The best of both worlds in one energy-efficient system

Posted by in categories: computing, neuroscience

We live in an analog world of continuous information flow that is both processed and stored by our brains at the same time, but our devices process information digitally in the form of discrete binary code, breaking the information into little bits (or bites).

Researchers at EPFL have revealed a pioneering technology that combines the potential of continuous analog processing with the precision of digital devices. By seamlessly integrating ultra-thin, two-dimensional semiconductors with ferroelectric materials, the research, published in Nature Electronics, unveils a novel way to improve and add new functionalities in computing. The new configuration merges traditional digital logic with brain-like analog operations.

The innovation from the Nanoelectronics Device Laboratory (Nanolab), in collaboration with Microsystems Laboratory, revolves around a unique combination of materials leading to brain-inspired functions and advanced electronic switches, including the standout negative capacitance Tunnel Field-Effect Transistor (TFET).

Aug 31, 2023

What Are Dreams For?

Posted by in category: neuroscience

Amanda Gefter writes about how our body twitches during REM sleep affect our dreams, and the scientific theories about why we dream.

Aug 31, 2023

The collective intelligence of cells during morphogenesis as a model for cognition beyond the brain

Posted by in categories: biotech/medical, chemistry, ethics, evolution, neuroscience

Michael Levin talk for the Mind, Technology, and Society (MTS) talk series at UC Merced on January 23, 2023. Abstract: Each of us makes the remarkable journey from the physics and chemistry of a quiescentunfertilized egg to that of a complex human being. How can we understand the continuousprocesses that scale up minds from the tiny physiological competencies of single cells to the large-scale metacognitive capacities of large brains? Here, I will describe a framework known as TAME-Technological Approach to Mind Everywhere — which enables identifying, understanding, andrelating to unconventional cognitive agents. I will use the example of the collective intelligence ofcells during morphogenesis to illustrate how we can begin to widen the lessons of multiscale neuroscience well beyond neurons. This will be essential as we head into a future that will bepopulated by a wide range of evolved, designed, and hybrid beings with novel bodies and novelminds. I will conclude with a case study of our new synthetic biorobot (Xenobots) and a discussionof the implications of these ideas for evolution, biomedicine, and ethics.

Aug 31, 2023

Michael Levin: Cognition and diverse intelligence in non-neural cellular collectives

Posted by in categories: biotech/medical, information science, neuroscience

Consciousness is usually ascribed to a specific set of mechanisms and functional capabilities of the complex brain. Importantly, those mechanisms (ion channels, electrical networks, neurotransmitter machinery) long pre-date the evolutionary innovation of nervous systems. Moreover, the algorithms and competencies such as memory, decision-making, and information integration likewise have an ancient evolutionary origin: before they controlled moving the body through 3D space, electrical networks moved body configurations through anatomical morphospace. In this talk, I will describe how we view the morphogenesis during embryonic development and regeneration as the behavior of a collective intelligence, which has many problem-solving capacities. I will describe the tools we have developed, paralleling neuroscientists’ attempts to read and write mental content by control of electrophysiology, to decode and re-write the pattern memories of the body. This has significant implications not only for biomedicine and evolutionary biology, but also for questions about consciousness and the scaling of coherent Selves from agential materials. I will conclude with some conjectures about what this new field offers the science of consciousness, in the form of new embodied living creatures that are outside the natural evolutionary stream of Earth, and the quest for theories of consciousness.-https://www.drmichaellevin.org/ Participate in our online research survey-Survey on Diverse intelligence-https://tufts.qualtrics.com/jfe/form/SV_eE51vKE34q3hexo (takes 9 minutes). Thank you.

Edited by Emilio Manzotti.
https://github.com/emilim/

Page 74 of 848First7172737475767778Last