Menu

Blog

Archive for the ‘computing’ category: Page 175

Feb 14, 2023

New Smart Technology Developed by UC Davis Professor May Help in Early Detection of Insects in Food and Agricultural Products

Posted by in categories: computing, education, engineering, food, internet

Zhongli Pan is the recipient of the 2023 Distinguished Service Award by the Rice Technical Working Group, which will be presented at the 2023 RTWF Conference on February 20–23. The award recognizes individuals who have given distinguished long-term service to the rice industry in areas of research, education, international agriculture, administration and industry rice technology.

Post-harvest losses are common in the global food and agricultural industry. Research shows that storage grain pests can cause serious post-harvest losses, almost 9% in developed countries to 20% or more in developing countries. To address this problem, Zhongli Pan, an adjunct professor in the Department of Biological and Agricultural Engineering, has developed a potential solution.

Pan’s recent project using an IoT (Internet of Things) based smart wireless technology to remotely detect early insect activity in storage, processing, handling and transportation may solve the insect infestation related challenges for the agricultural industry. The technology uses a novel device called SmartProbe – designed by Pan and his team using wireless sensors and cameras – and leverages cloud computing to monitor and predict insect occurrences. This could help control insect pest, reduce food loss and the fumigants used in agricultural products today. Ragab Gebreil, a project scientist in Pan’s lab, is the co-inventor of this technology.

Feb 14, 2023

Physicists Say Aliens May Be Using Black Holes as Quantum Computers

Posted by in categories: alien life, computing, existential risks, quantum physics

If life is common in our Universe, and we have every reason to suspect it is, why do we not see evidence of it everywhere? This is the essence of the Fermi Paradox, a question that has plagued astronomers and cosmologists almost since the birth of modern astronomy.

It is also the reasoning behind the Hart-Tipler Conjecture, one of the many (many!) proposed resolutions, which asserts that if advanced life had emerged in our galaxy sometime in the past, we would see signs of their activity everywhere we looked. Possible indications include self-replicating probes, megastructures, and other Type III-like activity.

Continue reading “Physicists Say Aliens May Be Using Black Holes as Quantum Computers” »

Feb 12, 2023

From the Shadows: A New Method for X-Ray Color Imaging

Posted by in categories: biotech/medical, chemistry, computing, media & arts

Researchers at the University of Göttingen have created a new approach to generate colored X-ray images. Previously, the only way to determine the chemical composition and arrangement of components in a sample using X-ray fluorescence analysis was to focus X-rays on the entire sample and scan it, which was both time-consuming and costly. The new method allows for the creation of an image of a large area with just one exposure, eliminating the need for focusing and scanning. The findings were published in the journal Optica.

In contrast to visible light, there are no comparably powerful lenses for “invisible” radiation, such as X-ray, neutron, or gamma radiation. However, these types of radiation are essential, for example, in nuclear medicine and radiology, as well as in industrial testing and material analysis.

Uses for X-ray fluorescence include analyzing the composition of chemicals in paintings and cultural artifacts to determine authenticity, origin, or production technique, or the analysis of soil samples or plants in environmental protection. The quality and purity of semiconductor components and computer chips can also be checked using X-ray fluorescence analysis.

Feb 12, 2023

Can You Trust Your Quantum Simulator? MIT Physicists Report a New Quantum Phenomenon

Posted by in categories: computing, particle physics, quantum physics

Physics gets strange at the atomic scale. Scientists are utilizing quantum analog simulators – laboratory experiments that involve cooling numerous atoms to low temperatures and examining them using precisely calibrated lasers and magnets – to uncover, harness, and control these unusual quantum effects.

Scientists hope that any new understanding gained from quantum simulators will provide blueprints for designing new exotic materials, smarter and more efficient electronics, and practical quantum computers. But in order to reap the insights from quantum simulators, scientists first have to trust them.

That is, they have to be sure that their quantum device has “high fidelity” and accurately reflects quantum behavior. For instance, if a system of atoms is easily influenced by external noise, researchers could assume a quantum effect where there is none. But there has been no reliable way to characterize the fidelity of quantum analog simulators, until now.

Feb 11, 2023

Elusive transition shows universal quantum signatures

Posted by in categories: computing, quantum physics

There are stark differences between metals, through which electrons flow freely, and electrical insulators, in which electrons are essentially immobile. And despite the obvious difficulties in finding a way to switch back and forth from a metal to an insulator within one material, physicists are trying to figure out how.

“Say you want to put billions of circuit elements on a tiny chip and then control, at that microscopic scale, whether just one of the elements is metallic or insulating in a controlled fashion,” said Debanjan Chowdhury, assistant professor of physics in the College of Arts and Sciences. “It would be remarkable if you could control the microscopic device at the flick of a switch.”

Digging into recent past experimental results to try to reconcile experiment and theory, Chowdhury and doctoral candidate Sunghoon Kim found that even a tiny amount of imperfection, inherent in any real-life material, plays a key role in revealing the universal physics associated with the experimental metal-to-insulator transition (Physical Review Letters, “Continuous Mott Transition in Moiré Semiconductors: Role of Long-Wavelength Inhomogeneities”). Understanding the physics behind this mysterious phase transition could lead to new complex microscopic circuits, superconductors and exotic insulators that could find use in quantum computing.

Feb 11, 2023

Researchers detail never-before-seen properties in a family of superconducting Kagome metals

Posted by in categories: computing, mobile phones, nuclear energy, quantum physics

Dramatic advances in quantum computing, smartphones that only need to be charged once a month, trains that levitate and move at superfast speeds. Technological leaps like these could revolutionize society, but they remain largely out of reach as long as superconductivity—the flow of electricity without resistance or energy waste—isn’t fully understood.

One of the major limitations for real-world applications of this technology is that the materials that make superconducting possible typically need to be at extremely cold temperatures to reach that level of electrical efficiency. To get around this limit, researchers need to build a clear picture of what different superconducting materials look like at the atomic scale as they transition through different states of matter to become superconductors.

Scholars in a Brown University lab, working with an international team of scientists, have moved a small step closer to cracking this mystery for a recently discovered family of superconducting Kagome metals. In a new study, they used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of this superconductor at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.

Feb 11, 2023

The Nobel Prize in Physics 1956

Posted by in categories: computing, physics

Died: 13 October 1987, Seattle, WA, USA

Affiliation at the time of the award: Bell Telephone Laboratories, Murray Hill, NJ, USA

Prize motivation: “for their researches on semiconductors and their discovery of the transistor effect”

Feb 11, 2023

Scientists Successfully Sent A Particle Back in Time Using A Quantum Computer

Posted by in categories: computing, information science, particle physics, quantum physics, time travel

As fantastic as this may seem this is not an impossible occurrence.


Before Einstein, time travel was just a story, but his calculations led us into the quantum world and gave us a more complicated picture of time. Kurt Godel found that Einstein’s equations made it possible to go back in time. What’s up? None of the ideas about how to go back in time were ever physically possible.

Before sending a particle back in time, scientists from ETH Zurich, Argonne National Laboratory, and Moscow Institute of Physics and Technology asked, Why stick to physical grounds?

Continue reading “Scientists Successfully Sent A Particle Back in Time Using A Quantum Computer” »

Feb 11, 2023

Mathematicians Complete Quest to Build ‘Spherical Cubes’

Posted by in categories: computing, mathematics, space

Space “cubically” with shapes that act like spheres? A proof at the intersection of geometry and theoretical computer science says yes.

Feb 10, 2023

Scientists Say New Brain-Computer Interface Lets Users Transmit 62 Words Per Minute

Posted by in categories: computing, Elon Musk, neuroscience

A team of Stanford scientists claims to have tested a new brain-computer interface (BCI) that can decode speech at up to 62 words per minute, improving the previous record by 3.4 times.

That’d be a massive step towards real-time speech conversion at the pace of natural human conversation.

Max Hodak, who founded BCI company Neuralink alongside Elon Musk, but wasn’t involved in the study, called the research “a meaningful step change in the utility of implanted BCIs” in an email to Futurism.