Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Understanding the impact of radiation on silicon carbide devices for space applications

The first results of the ETH Zurich and ANSTO collaboration focused on silicon carbide (SiC) devices have been reported in two publications.

Dr. Corinna Martinella, formerly a senior scientist at ETH Zurich, said in a LinkedIn post that the research advances an understanding of the basic mechanisms of damage in SiC power devices exposed to .

An article in IEEE Transactions on Nuclear Science describes the testing of how commercial (SiC) power devices, including MOSFETs and Junction Barrier Schottky (JBS) diodes, respond to space-like radiation at a .

Over 40 Malicious Firefox Extensions Target Cryptocurrency Wallets, Stealing User Assets

Cybersecurity researchers have uncovered over 40 malicious browser extensions for Mozilla Firefox that are designed to steal cryptocurrency wallet secrets, putting users’ digital assets at risk.

“These extensions impersonate legitimate wallet tools from widely-used platforms such as Coinbase, MetaMask, Trust Wallet, Phantom, Exodus, OKX, Keplr, MyMonero, Bitget, Leap, Ethereum Wallet, and Filfox,” Koi Security researcher Yuval Ronen said.

The large-scale campaign is said to have been ongoing since at least April 2025, with new extensions uploaded to the Firefox Add-ons store as recently as last week.

Does a prospective father’s gut microbiota matter?

Germline cells play a key role in the transmission of phenotypes and physiological adaptations to subsequent generations (1). Over a century ago, August Weismann proposed that changes in somatic cells cannot be passed on to germ cells or offspring, a theory known as the Weismann barrier (2). Nevertheless, recent studies have proven that the Weismann barrier is permeable, and information can pass from soma to germline and modulate offspring phenotypes. In the past decade, there has been tremendous interest and progress in understanding how an altered microbiome (dysbiosis) affects different somatic cells that compose body tissues, such as brain, liver, heart, kidney, and lungs (3). Nevertheless, whether gut microbiome dysbiosis can exert an influence on the mammalian germline cells (i.e., gut to germline), and ultimately nonexposed offspring, remains unclear.

To tackle this research question, my colleagues and I established an inducible model of gut microbiota dysbiosis in isogenic male mice, using ad lib nonabsorbable antibiotics (nABX) that cannot cross the epithelial barrier of the gut (4). As expected, 6 weeks of low-dose nABX treatment led to a physiologically significant dysbiosis, which is reversible and gradually normalized to a physiologically healthy gut microbiota after 8 weeks of nABX withdrawal (6 weeks + 8 recovery). The induced dysbiosis after 6 weeks of nABX had no appreciable effects on male body weight, growth, or fertility. No nABx residues were detected in the serum or testes of treated males, which confirmed that any distal tissue responses are gut dysbiosis–induced rather than systemic drug effects.

We then examined physiological changes in the male reproductive system in response to 6 weeks of dysbiosis. Dysbiotic males had smaller testes, lower sperm count, and more abnormally shaped sperm. Histological analysis uncovered a wide range of anatomical abnormalities in testes of dysbiotic males, including increased number of abnormal seminiferous tubules, reduced epithelial thickness, and absence of mitotic compartments, which were not observed in control testes. Testicular metabolomic profiles revealed that testes clustered according to gut microbiota status and exhibited dysregulated sphingolipids, glycerophospholipids, and endocannabinoids, all known to play pivotal roles in germ cell function. Moreover, in dysbiotic male testes, spermatogenesis-regulating genes were misexpressed—most notably leptin, a reproductive hormone, was strongly down-regulated.

/* */