Menu

Blog

Page 1516

Sep 6, 2023

How Tightly Bound Are Hypertritons?

Posted by in categories: particle physics, space

The Large Hadron Collider (LHC) is best known for the 2012 discovery of the Higgs boson, which was made by smashing together high-energy protons (see Collection: The History of Observations of the Higgs Boson). But protons are not the only particles accelerated by the collider, and some studies call for colliding much heavier objects. Now a team working on the LHC’s ALICE experiment has collided lead nuclei to study an exotic particle called a hypertriton [1]. The result could help researchers reduce errors in models of the structure of neutron stars.

A hypertriton is a tritium nucleus in which one neutron has been replaced with a lambda hyperon, a heavier particle with a quark configuration of up-down-strange rather than up-down-down. Researchers have long known the energy it takes to bind tritium’s proton and two neutrons. But it was unclear how that energy changed with the neutron–lambda hyperon switch.

The ALICE Collaboration turned to lead–lead collisions to answer this question because these collisions produce hypertritons in much greater numbers than proton–proton ones do. A hypertriton quickly decays into a helium-3 nucleus and a pion, with the decay time and the energy of the decay products depending on the binding energy between the lambda hyperon and the hypertriton core.

Sep 6, 2023

Active Particles Push the Boundaries of Two-Dimensional Solids

Posted by in categories: particle physics, transportation

Active particles can form two-dimensional solids that are different from those formed by nonmotile particles, showing long-range crystalline order accompanied by giant spontaneous deformations.

If you compress a liquid slowly enough at low temperatures, it will freeze into an ordered solid: a crystal. Or at least that’s what we’re used to seeing in three dimensions. If you instead consider particles confined to a two-dimensional (2D) plane, the outcome is quite different. For equilibrium systems, a 2D solid stabilizes into a structure that lacks long-range order—it becomes less ordered further away from a central lattice site. The behavior of systems far from equilibrium, such as self-propelled particles, remains, however, an open question. In a numerical study of bacteria-like particles, Xia-qing Shi of Soochow University in China and his colleagues now show that active crystals follow a slightly different set of rules than their nonmotile counterparts [1]. Like 2D equilibrium crystals, 2D active systems stabilize into an ordered solid-like phase but with extremely large particle fluctuations around the configuration of a perfect crystal lattice.

Sep 6, 2023

The discovery of a new kind of cell shakes up neuroscience

Posted by in category: neuroscience

A research team from University of Lausanne (UNIL) and the Wyss Center, has discovered a new type of cell essential for brain function. Hybrid in composition and function, in between the two types of brain cells known so far—the neurons and the glial cells—these cells of a new order are present in several brain regions in mice and humans.

The study published in the journal Nature shows that these cells promote the ability to memorize, the control of movements, and contrast the insurgence of epileptic seizures.

Neuroscience is in great upheaval. The two major families of cells that make up the brain, neurons and glial cells, secretly hid a hybrid cell, halfway between these two categories. For as long as neuroscience has existed, it has been recognized that the brain works primarily thanks to the neurons and their ability to rapidly elaborate and transmit information through their networks.

Sep 6, 2023

Scientists demonstrate new, improved way to make infrared light, with quantum dots

Posted by in categories: electronics, quantum physics

Scientists with the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers said the method demonstrates great promise; the dots are already as efficient as existing conventional methods, even though the experiments are still in early stages.

The dots could someday form the basis of infrared lasers as well as small and cost-effective sensors, such as those used in exhaust emissions tests or breathalyzers.

“Right now the performance for these dots is close to existing commercial sources, and we have reason to believe we could significantly improve that,” said Philippe Guyot-Sionnest, a professor of physics and chemistry at the University of Chicago, member of the James Frank Institute, and one of three authors on the paper published in Nature Photonics. “We’re very excited for the possibilities.”

Sep 6, 2023

Researchers issue warning over Chrome extensions that access private data

Posted by in category: finance

Google Chrome browser extensions expose users to hackers who can easily tap into their private data, including social security numbers, passwords and banking information, according to researchers at the University of Wisconsin-Madison (UW-M).

The researchers further uncovered vulnerabilities involving passwords that are stored in plain text within HTML source code on web sites of some of the world’s largest corporate giants, including Google, Amazon, Citibank, Capital One and the Internal Revenue Service.

The problem stems from the manner in which extensions access internal web page code.

Sep 6, 2023

Two world’s biggest telescopes hacked by Ransomware attack

Posted by in categories: cybercrime/malcode, space

Several telescopes are still down weeks after a cybersecurity attack was discovered by US National Science Foundation (NSF) researchers. There is presently no information available on when the Gemini North telescope in Hawaii and the Gemini South telescope in Chile will resume operations. A number of smaller telescopes on the slopes of Cerro Tololo in Chile were also shut down “out of an abundance of caution”.

The IT team at the National Science Foundation’s NOIRLab discovered suspicious behavior in the laboratory’s computer systems early on the morning of August 1. This led to the decision to temporarily halt activities at the huge optical infrared telescopes located on Hawaii’s Maunakea for the sake of safety.

The ‘double’ telescope located in the southern Andes of Chile was already in the process of being prepped for maintenance and required very little more work.

Sep 6, 2023

How FBI remotely deleted QBot malware from 700K computers worldwide

Posted by in categories: biotech/medical, cryptocurrencies, cybercrime/malcode, finance, government, law enforcement

The United States government said today that a multinational law enforcement operation has destroyed Qakbot, also known as QBot, an infamous botnet and malware loader that was responsible for losses that amounted to hundreds of millions of dollars all over the globe, and that they have confiscated more than $8.6 million in illegal cryptocurrencies.

During a news conference held on Tuesday to announce the takedown of the botnet, United States Attorney Martin Estrada referred to the investigation as “the most significant technological and financial operation ever led by the Department of Justice against a botnet.” Duck Hunt was headed by the FBI. For one thing, the federal government developed some software that, when installed on computers that were infected with Qbot, would make the virus useless.

Continue reading “How FBI remotely deleted QBot malware from 700K computers worldwide” »

Sep 6, 2023

Atomic-scale spin-optical laser: New horizon for optoelectronic devices

Posted by in category: quantum physics

Researchers at the Technion—Israel Institute of Technology have developed a coherent and controllable spin-optical laser based on a single atomic layer. This discovery is enabled by coherent spin-dependent interactions between a single atomic layer and a laterally confined photonic spin lattice, the latter of which supports high-Q spin-valley states through the photonic Rashba-type spin splitting of a bound state in the continuum.

Published in Nature Materials and also featured in the journal’s Research Briefing, the achievement paves the way to study coherent spin-dependent phenomena in both classical and quantum regimes, opening new horizons in and optoelectronic devices exploiting both electron and photon spins.

Can we lift the spin degeneracy of light sources in the absence of magnetic fields at room temperature? According to Dr. Rong, “Spin-optical light sources combine photonic modes and electronic transitions and therefore provide a way to study the exchange of spin information between electrons and photons and to develop advanced optoelectronic devices.”

Sep 6, 2023

Searching for dark matter with the world’s most sensitive radio

Posted by in categories: cosmology, particle physics

Since the 1960s there has been plenty of evidence to support the existence of dark matter through astrophysical and cosmological observations, and at this point we’re very confident that it exists. The question remains, though: what is dark matter actually made of?

Throughout the decades there have been many candidates for , such as weakly interacting (WIMPs), neutrinos, and primordial black holes. Candidates like WIMPs were originally theorized because they have properties that address issues in other parts of physics. Another candidate that could answer some thorny physics questions is called the .

Axions were originally theorized as a solution to a question known as the Strong CP Problem, but physicists also realized that axions could be produced in a way that would satisfy requirements for them to be dark matter. These are the particles that the DMRadio experiments search for.

Sep 6, 2023

Engineered Antibody Could Prevent Organ Rejection After Transplant

Posted by in category: biotech/medical

While other therapeutics have helped people and other animals avoid organ rejection, this one appears to trigger fewer dangerous side effects.