Menu

Blog

Archive for the ‘computing’ category: Page 761

Nov 26, 2015

Blood Vessel Formation Mathematically Modeled

Posted by in categories: biotech/medical, computing

By combining experiments with computer simulations, scientists have come up with a mathematical model that explains blood vessel formation.

Read more

Nov 25, 2015

‘Material universe’ yields surprising new particle

Posted by in categories: computing, materials, particle physics, quantum physics

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act as insulators for current applied in some directions and as conductors for current applied in other directions. This behavior suggests a range of potential applications, from low-energy devices to efficient transistors.

The researchers theorize that the particle exists in a material known as tungsten ditelluride (WTe2), which the researchers liken to a “material universe” because it contains several , some of which exist under normal conditions in our universe and others that may exist only in these specialized types of crystals. The research appeared in the journal Nature this week.

The new particle is a cousin of the Weyl fermion, one of the particles in standard theory. However, the type-II particle exhibits very different responses to electromagnetic fields, being a near perfect conductor in some directions of the field and an insulator in others.

Read more

Nov 25, 2015

Company Plans To Resurrect Humans With Artificial Intelligence By 2045

Posted by in categories: computing, nanotechnology, robotics/AI

A company has announced its intention to resurrect the dead by storing their memories and using artificial intelligence to return them to life. In the future, of course.

Yeaaaaaah. What?

The company is called Humai, and at the moment, it is pretty sparse on details – and we’re still not sure it’s not a marketing ploy or a hoax. At any rate, the company says they want to store the “conversational styles, behavioral patterns, thought processes and information about how your body functions from the inside-out” on a silicon chip using AI and nanotechnology, according to their website.

Read more

Nov 25, 2015

‘Go’ Is the Game Machines Can’t Beat. Google’s Artificial Intelligence Whiz Hints That His Will — By Mark Bergen | Re/code

Posted by in categories: business, computing, innovation, machine learning, neuroscience, robotics/AI

20151120-go-board-game-google-ai

“When the world’s smartest researchers train computers to become smarter, they like to use games. Go, the two-player board game born in China more than two millennia ago, remains the nut that machines still can’t crack.”

Read more

Nov 25, 2015

Ray Kurzweil — The Future of Medicine

Posted by in categories: biotech/medical, chemistry, computing, health, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity, transhumanism

https://www.youtube.com/watch?v=Q9Ec7AvnufQ

Ray Kurzweil: https://en.wikipedia.org/wiki/Ray_Kurzweil#Health_and_aging

Raymond “Ray” Kurzweil is an American author, computer scientist, inventor and futurist. Aside from futurology, he is involved in fields such as optical character recognition (OCR), text-to-speech synthesis, speech recognition technology, and electronic keyboard instruments. He has written books on health, artificial intelligence (AI), transhumanism, the technological singularity, and futurism. Kurzweil is a public advocate for the futurist and transhumanist movements, and gives public talks to share his optimistic outlook on life extension technologies and the future of nanotechnology, robotics, and biotechnology.

Continue reading “Ray Kurzweil — The Future of Medicine” »

Nov 24, 2015

Hacking the Brain — Restoring Lost Abilities With the Latest Neurotechnologies

Posted by in categories: biotech/medical, computing, cyborgs, genetics, nanotechnology, neuroscience, Ray Kurzweil

A few weeks ago, I wrote about Ray Kurzweil’s wild prediction that in the 2030s, nanobots will connect our brains to the cloud, merging biology with the digital world.

Let’s talk about what’s happening today.

Over the past few decades, billions of dollars have been poured into three areas of research: neuroprosthetics, brain-computer interfaces and optogenetics.

Read more

Nov 23, 2015

Particle Accelerators Could Soon Fit In A Shoebox

Posted by in categories: computing, particle physics

As the challenges of particle physics have become more and more complex, we’ve had to plan and build larger and larger machines to explore the tiny subatomic world. But now, an international group of physicists has developed a technology to miniaturize particle accelerators, which could revolutionize physics and the life sciences.

The team has received a $13.5 million (£9 million) grant to develop a prototype particle accelerator that will fit in a shoebox. The technology being developed is called “accelerator-on-a-chip”. Electrons are made to travel through a channel within a silica chip. Shining a laser onto the chip produces an electric field, and the field is modified by the ridges within the channel. This set-up dramatically accelerates the electrons moving through the channel.

The prototype is based on independent experiments from the SLAC National Accelerator Laboratory in California and Friedrich-Alexander University Erlangen-Nuremberg (FAU) in Germany. Both teams discovered that these chips are capable of accelerating electrons to relativistic speed no matter the speed at which the electron was travelling before entering the channel. Also, the technology is capable of producing a larger acceleration gradient than current labs, which could reduce the size of particle accelerators – 100 meters (330 feet) of accelerator-on-a-chip would produce an acceleration equivalent to the 3.2-kilometer (two miles) SLAC linear accelerator, which is the longest in the world.

Read more

Nov 23, 2015

No lens? No problem for FlatCam

Posted by in categories: computing, electronics, information science

How thin can a camera be? Very, say Rice University researchers who have developed patented prototypes of their technological breakthrough.

FlatCam, invented by the Rice labs of electrical and computer engineers Richard Baraniuk and Ashok Veeraraghavan, is little more than a thin with a mask that replaces lenses in a traditional camera.

Making it practical are the sophisticated computer algorithms that process what the sensor detects and converts the sensor measurements into images and videos.

Read more

Nov 20, 2015

There Is Growing Evidence that Our Universe Is a Giant Hologram

Posted by in categories: computing, cosmology, information science, quantum physics

Old post,but interesting…


If the holographic principle does indeed describe our universe, it could help resolve many inconsistencies between relativistic physics and quantum physics, including the black hole information paradox. It would also offer researchers a way to solve some very tough quantum problems using relatively simple gravitational equations. But before we can be sure that we’re living in the Matrix, there’s still a lot of work to be done.

“We did this calculation using 3D gravitational theory and 2D quantum field theory, but the universe actually has three spatial dimensions plus time,” Grumiller said. “A next step is to generalize these considerations to include one higher dimension. There are also many other quantities that should correspond between gravitational theory and quantum field theory, and examining these correspondences is ongoing work.”

Continue reading “There Is Growing Evidence that Our Universe Is a Giant Hologram” »

Nov 20, 2015

Scientists Crack the Code to Protein Self-Assembly

Posted by in categories: biotech/medical, computing, genetics

New findings out of Duke University will allow medical researchers to act like computer programmers except with genetic code rather than digital.

Read more