Menu

Blog

Archive for the ‘materials’ category: Page 242

Feb 16, 2016

Mind-Controlled Prosthetics: New Study Allows Patient To Move Fingers With Mind

Posted by in categories: biotech/medical, cyborgs, materials, neuroscience

With the success of Graphene as a material for BMI plus the new micro stints that can travel through blood cells to the brain; prosthetic technology is only going to continue to improve to maybe even a point where some athletes may wish to have physical and endurance capabilities improved through this type of technology if it is approved and allowed by the various athletic associations.


A team of researchers has demonstrated the first-ever successful prosthetic arm that can control individual fingers with thoughts.

Read more

Feb 16, 2016

A black hole on a chip made of a metal that behaves like water

Posted by in categories: computing, cosmology, materials

In a new paper published in Science, researchers at the Harvard and Raytheon BBN Technology have observed, for the first time, electrons in a metal behaving like a fluid (credit: Peter Allen/Harvard SEAS)

A radical discovery by researchers at Harvard and Raytheon BBN Technology about graphene’s hidden properties could lead to a model system to explore exotic phenomena like black holes and high-energy plasmas, as well as novel thermoelectric devices.

Continue reading “A black hole on a chip made of a metal that behaves like water” »

Feb 13, 2016

New graphene lens could help computers beam data at the speed of light

Posted by in categories: computing, materials

Researchers have used graphene to create a lens that’s so flat, it’s 300 times thinner than a sheet of paper and weighs just 1 microgram. That means it’s small enough to split a beam of single photons — something that’s going to be crucial if we ever want to develop optical computers that process data at the speed of light.

These optical computers require devices called photonic chips, which store information as photons rather than electrons, and allow that information to move at light speed — and people are pretty excited about it. NASA is already using it, and the technology is getting more and more impressive. But there are still some limitations, and one of those is having lenses thin enough to split beams of light and divert them around the chip.

Attempts to make these lenses in the past have required expensive and impractical materials such as gold, but researchers at Swinburne University of Technology in Australia have been working on a solution, and they’ve managed to produce a lens using graphene oxide that’s not only thin enough to overcome the diffraction limit, but is also cheap, strong, flexible, and easy to produce.

Read more

Feb 12, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene

Posted by in categories: electronics, energy, materials, nanotechnology

Liquid metal.


Abstract: Graphene is going to change the world — or so we’ve been told.

Since its discovery a decade ago, scientists and tech gurus have hailed graphene as the wonder material that could replace silicon in electronics, increase the efficiency of batteries, the durability and conductivity of touch screens and pave the way for cheap thermal electric energy, among many other things.

Read more

Feb 12, 2016

Harvard John A. Paulson School of Engineering and Applied Sciences

Posted by in categories: electronics, materials, particle physics

Graphene is going to change the world — or so we’ve been told.

Since its discovery a decade ago, scientists and tech gurus have hailed graphene as the wonder material that could replace silicon in electronics, increase the efficiency of batteries, the durability and conductivity of touch screens and pave the way for cheap thermal electric energy, among many other things.

Continue reading “Harvard John A. Paulson School of Engineering and Applied Sciences” »

Feb 11, 2016

Scientists adapt next-gen solar cell materials for a different purpose

Posted by in categories: materials, nanotechnology, solar power, sustainability

Making Nanowire Lasers


Feb. 11, 2016 — Scientists have found a simple new way to produce nanoscale wires that can serve as bright, stable and tunable lasers — an advance toward using light to transmit data.

Read more

Feb 10, 2016

Bending Light

Posted by in category: materials

This material allows light to bend as it travels through it.

Read more

Feb 9, 2016

NYC Startup Aims to 3D Print Bones with Patients‘ Own Stem Cells

Posted by in categories: 3D printing, biotech/medical, materials

When the idea of a medical transplant is brought up, most people’s thoughts are usually drawn to procedures such as blood transfusions or organ replacements. But, oftentimes, we forget the importance of our bone structure, as well as the 2 million painful bone transplants that take place every year around world. Previously stuck in a Medieval-like operation method, surgeons had little option but to replace their patients’ bones with the bones of animals or human cadavers, and even this procedure can oftentimes led to complications due to the body’s rejection of the foreign replacement. But 3D bioprinting has been a major influence in changing the entire nature of this traditional surgical procedure, new methods of creating bone grafts have been developed by researchers around the world from Montana State University to Tokyo. 3D printing has become a recent revelation in skeletal reconstruction surgery, with 3D printed synthetic implants and even harvested stem cell materials proving to be a much safer and efficient surgical alternative.

Read more

Feb 8, 2016

Quantum Levitation

Posted by in categories: materials, quantum physics, transportation

Researchers at the school of physics and astronomy at Tel Aviv University have created a track around which a superconductor (a material that is extremely efficient at transmitting electricity) can float, thanks to the phenomenon of “quantum levitation “.

This levitation effect is explained by the Meissner effect, which describes how, when a material makes the transition from its normal to its superconducting state, it actively excludes magnetic fields from its interior, leaving only a thin layer on its surface.

When a material is in its superconducting state — which involves very low temperatures — it is strongly diamagnetic. This means that when a magnetic field is externally applied, it will create an equally opposing magnetic field, locking it in place.

Continue reading “Quantum Levitation” »

Feb 8, 2016

Chiral magnetic effect generates quantum current

Posted by in categories: computing, materials, quantum physics

Another step forward for Quantum — The Quantum Current. US Dept. of Energy has a new method to generate very low-resistance electric (Quantum) current which will improve our methods for energy, quantum computing, and medical imaging, and possibly even a new mechanism for inducing superconductivity—the ability of some materials (zirconium pentatelluride) to carry current with no energy loss.

Read more