Menu

Blog

Archive for the ‘particle physics’ category: Page 30

Sep 20, 2023

Researchers make sand that flows uphill

Posted by in categories: chemistry, engineering, information science, particle physics

Engineering researchers at Lehigh University have discovered that sand can actually flow uphill.

The team’s findings were published today in the journal Nature Communications. A corresponding video shows what happens when torque and an is applied to each grain—the grains flow uphill, up walls, and up and down stairs.

Continue reading “Researchers make sand that flows uphill” »

Sep 20, 2023

How dark matter-powered stars could solve a huge cosmological puzzle

Posted by in categories: cosmology, particle physics

Astronomers say they have spotted evidence of stars fuelled by the annihilation of dark matter particles. If true, it could solve the cosmic mystery of how supermassive black holes appeared so early.

By Jonathan O’Callaghan

Sep 20, 2023

New ‘Physics-Inspired’ Generative AI Exceeds Expectations

Posted by in categories: particle physics, robotics/AI

Some modern image generators rely on the principles of diffusion to create images. Alternatives based on the process behind the distribution of charged particles may yield even better results.

Sep 19, 2023

New quasi-particle bridges microwave and optical domains

Posted by in categories: computing, particle physics, quantum physics

In a paper published today (Sept. 18) in Nature Communications, researchers from the Paul-Drude-Institut in Berlin, Germany, and the Instituto Balseiro in Bariloche, Argentina, demonstrated that the mixing of confined quantum fluids of light and GHz sound leads to the emergence of an elusive phonoriton quasi-particle—in part a quantum of light (photon), a quantum of sound (phonon) and a semiconductor exciton. This discovery opens a novel way to coherently convert information between optical and microwave domains, bringing potential benefits to the fields of photonics, optomechanics and optical communication technologies.

The research team’s work draws inspiration from an everyday phenomenon: the transfer of energy between two coupled oscillators, such as, for instance, two pendulums connected by a spring. Under specific coupling conditions, known as the strong-coupling (SC) regime, energy continuously oscillates between the two pendulums, which are no longer independent, as their frequencies and decay rates are not those of the uncoupled ones. The oscillators can also be photonic or electronic quantum states: the SC regime, in this case, is fundamental for quantum state control and swapping.

In the above example, the two pendulums are assumed to have the same frequency, i.e., in resonance. However, hybrid quantum systems require coherent information transfer between oscillators with largely dissimilar frequencies. Here, one important example is in networks of quantum computers. While the most promising quantum computers operate with microwave qubits (i.e., at few GHz), quantum information is efficiently transferred using near infrared photons (100ds THz).

Sep 19, 2023

Why is China’s trying to build an artificial sun?

Posted by in categories: nuclear energy, particle physics, sustainability

China is looking for a clean, sustainable energy source and is turning to the power of nuclear fusion.

What is a clean source of power that could provide clean and unlimited energy? Nuclear energy, which uses nuclear fission, comes to mind. But there is another potential source of energy that would promote sustainability – nuclear fusion.

Nuclear fusion is the opposite of nuclear fission. Fission means splitting atoms apart, which results in the release of energy. Fusion is when two atomic nuclei combine to form a heavier nucleus. Fusion is the process that powers the Sun and the stars.

Sep 19, 2023

Dark Photons Could Explain One of The Universe’s Greatest Mysteries

Posted by in categories: cosmology, particle physics, quantum physics

A shadowy form of light within a universe of hypothetical particles is getting some serious consideration as a means of discovering the identity of dark matter.

According to a comprehensive new analysis under quantum chromodynamics, the dark photon is a much better fit for the observed results of particle collider experiments than the standard model of particle physics, by quite a wide margin.

In fact, a team of researchers led by physicist Nicholas Hunt-Smith of the ARC Centre of Excellence for Dark Matter Particle Physics and the University of Adelaide in Australia calculated a confidence level of 6.5 sigma, suggesting the odds that dark photons don’t explain the observations are in the ballpark of one in a billion.

Sep 19, 2023

Physicists Create New Magnetic Material to Unleash Quantum Computing

Posted by in categories: computing, information science, mathematics, particle physics, quantum physics

Quantum behavior is a strange, fragile thing that hovers on the edge of reality, between a world of possibility and a Universe of absolutes. In that mathematical haze lies the potential of quantum computing; the promise of devices that could quickly solve algorithms that would take classic computers too long to process.

For now, quantum computers are confined to cool rooms close to absolute zero (−273 degrees Celsius) where particles are less likely to tumble out of their critical quantum states.

Breaking through this temperature barrier to develop materials that still exhibit quantum properties at room temperatures has long been the goal of quantum computing. Though the low temperatures help keep the particle’s properties from collapsing out of their useful fog of possibility, the bulk and expense of the equipment limits their potential and ability to be scaled up for general use.

Sep 18, 2023

Generating biskyrmions in a rare earth magnet

Posted by in categories: nanotechnology, particle physics

Magnetic skyrmions have received much attention as promising, topologically protected quasiparticles with applications in spintronics. Skyrmions are small, swirling topological magnetic excitations with particle-like properties. Nevertheless, the lower stability of magnetic skyrmions only allow them to exist in a narrow temperature range, with low density of the particles, thus implying the need for an external magnetic field, which greatly limits their wider applications.

In a new report published in Science Advances, Yuzhu Song and a team of researchers formed high-density, spontaneous magnetic biskyrmions without a magnetic field in ferrimagnets via the thermal expansion of the lattice.

The team noted a strong connection between the atomic-scale ferrimagnetic structure and nanoscale magnetic domains in a ferrimagnet compound by using neutron powder diffraction and Lorentz transmission electron microscopy measurements.

Sep 18, 2023

CERN researchers continue to look for elusive monopoles

Posted by in category: particle physics

New advances were made from LHC Run 2 data obtained between 2015 and 2018 but the scientists are yet to spot the monopoles.

Researchers at the European Council for Nuclear Research (CERN) are among those physicists who have been looking for magnetic monopoles. A recently published paper from the ATLAS Collaboration at CERN has confirmed that it continues to look for the elusive particle, a press release said.

The ATLAS Collaboration is one of science’s most significant collaborative efforts. Its webpage states that it consists of 0 members and 3,000 scientific authors comprised of physicists, engineers, technicians, students, and support staff from around the world.

Sep 18, 2023

Researchers create optical device that can kill pathogens on surfaces while remaining safe for humans

Posted by in categories: biotech/medical, particle physics

While it has long been known that ultraviolet (UV) light can help kill disease-causing pathogens, the COVID-19 pandemic has put a spotlight on how these technologies can rid environments of germs. However, the excimer lamps and LEDs that can directly emit light in the required deep-UV wavelengths generally have low efficiency or suffer from short lifetimes. Moreover, UV light of the wrong wavelength can actually be harmful to human cells.

Now, a team led by researchers from Osaka University has shown how an made of can be used to generate deep-UV light in a method wholly different from previous approaches. The team made use of a process called “second harmonic generation,” which relies on the fact that the frequency of a photon, or particle of light, is proportional to its energy. The study is published in the journal Applied Physics Express.

Most are considered “linear” with respect to their response to light, i.e., photons cannot interact with each other. However, inside certain “nonlinear” materials, two photons can be combined into a with twice the energy, and thus, twice the frequency.

Page 30 of 481First2728293031323334Last