Menu

Blog

Archive for the ‘biological’ category: Page 35

Apr 13, 2023

Meet 10 Women Who Are Leading The Synthetic Biology Revolution

Posted by in categories: bioengineering, biological, biotech/medical, chemistry, computing, economics, sustainability

In the last decade, we have witnessed biology bring us some incredible products and technologies: from mushroom-based packaging to animal-free hotdogs and mRNA vaccines that helped curb a global pandemic. The power of synthetic biology to transform our world cannot be overstated: this industry is projected to contribute to as much as a third of the global economic output by 2030, or nearly $30 trillion, and could impact almost every area of our lives, from the food we eat to the medicine we put in our bodies.

The leaders of this unstoppable bio revolution – many of whom you can meet at the SynBioBeta conference in Oakland, CA, on May 23–25 – are bringing the future closer every day through their ambitious vision, long-range strategy, and proactive oversight. These ten powerful women are shaping our world as company leaders, biosecurity experts, policymakers, and philanthropists focused on charting a new course to a more sustainable, equitable, clean, and safe future.

As an early pioneer in the high-throughput synthesis and sequencing of DNA, Emily Leproust has dedicated her life to democratizing gene synthesis to catapult the growth of synthetic biology applications from medicine, food, agriculture, and industrial chemicals to DNA data storage. She was one of the co-founders of Twist Bioscience in 2013 and is still leading the expanding company as CEO. To say that Twist’s silicon platform was a game-changer for the industry is an understatement. And it is no surprise that Leproust was recently honored with the BIO Rosalind Franklin Award for her work in the biobased economy and biotech innovation.

Apr 13, 2023

Cyborg Earth and the Technological Embryogenesis of the Biosphere

Posted by in categories: biological, chemistry, cyborgs, particle physics, quantum physics, robotics/AI

Humongous Fungus, a specimen of Armillaria ostoyae, has claimed the title of world’s largest single organism. Though it features honey mushrooms above ground, the bulk of this creature’s mass arises from its vast subterranean mycelial network of filamentous tendrils. It has spread across more than 2,000 acres of soil and weighs over 30,000 metric tons. Yet I would contend that Humongous Fungus represents a mere microcosm of the world’s true largest organism, a creature that I will call Cyborg Earth. What is Cyborg Earth? Eastern religions have suggested that all life is fundamentally interconnected. Cyborg Earth represents an extension of this concept.

All across the globe, biological life thrives. Quintillions upon quintillions of biomolecular computations happen every second, powering all life. Mycoplasma bacteria. Communities of leafcutter ants. The Humongous Fungus. Beloved beagles. Seasonal influenza viruses. Parasitic roundworms. Families of Canadian elk. Vast blooms of cyanobacteria. Humanity. Life works because of complexity that arises from simplicity that in turn arises from whatever inscrutable quantum mechanical rules lay beneath the molecular scale.

All creatures rearrange atoms in various ways. Termites and beavers rearrange larger bunches of atoms than most organisms. As humans progressed from paleolithic to metalwork to industrialization and then to the space age, information revolution, and era of artificial intelligence, they learned to converse with the atoms around them in an ever more complex fashion. We are actors in an operatic performance, we are subroutines of evolution, we are interwoven matryoshka patterns, an epic chemistry.

Apr 12, 2023

Researchers Use Quantum Biology to Understand Human Response to Earth’s Magnetic Field

Posted by in categories: biological, quantum physics

Shortly after Max Planck shook the scientific world with ideas about the fundamental quantization of energy, researchers built and leveraged theories of quantum mechanics to resolve physical phenomena that had previously been unexplainable, including the behavior of heat in solids and light absorption on an atomic level. In the 120-plus years since, researchers have looked beyond physics and used quantum theory’s same perplexing — even “spooky,” according to Einstein — laws to solve inexplicable phenomena in a variety of other disciplines.

Today, researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, are applying quantum mechanics to biology to better understand of one of nature’s biggest mysteries — magnetosensitivity, an organism’s ability to sense Earth’s magnetic field and use it as a tool to adjust some biological processes. And they’ve found some surprising results.

Continue reading “Researchers Use Quantum Biology to Understand Human Response to Earth’s Magnetic Field” »

Apr 12, 2023

Why Baby Animals Can Walk So Much Sooner Than Human Infants

Posted by in category: biological

The early, shaky baby steps in many mammals stem from basic survival skills, while baby humans are prioritizing other biological needs.

Apr 12, 2023

Evidence found of possible interdomain horizontal gene transfer leading to development of the eye in vertebrates

Posted by in categories: biological, chemistry, evolution, genetics

A group of molecular and chemical biologists at the University of California, San Diego, has found possible evidence of interdomain horizontal gene transfer leading to the development of the eye in vertebrates. In their study, reported in Proceedings of the National Academy of Sciences, Chinmay Kalluraya, Alexander Weitzel, Brian Tsu and Matthew Daugherty used the IQ-TREE software program to trace the evolutionary history of genes associated with vision.

Ever since scientists proved that humans, along with other animals, developed due to , one problem has stood out—how could evolution possibly account for the development of something as complicated as the eyeball? Even Charles Darwin was said to be stumped by the question. In recent times, this seeming conundrum has been used by some groups as a means to discredit altogether. In this new effort, the team in California sought to answer the question once and for all.

Their work began with the idea that vision in vertebrates may have got its start by using light-sensitive genes transferred from microbes. To find out if that might be the case, the team submitted likely human gene candidates to the IQ-TREE program to look for similar genetic sequences in other creatures, most specifically, microbes.

Apr 11, 2023

Bio-Inspired Quantum Technologies

Posted by in categories: biological, computing, quantum physics

The Oxford Martin Programme on Bio-Inspired Technologies is investigating the possibility of making computers real.

We aim to develop a completely new methodology for overcoming the extreme fragility of memory. By learning how biological molecules shield fragile states from the environment, we hope to create the building blocks of future computers.

The unique power of computers comes from their ability to carry out all possible calculations in parallel.

Apr 11, 2023

Evolution. Toward an alternative biology

Posted by in categories: biological, evolution

NCBI Literature Resources.

MeSH PMC Bookshelf Disclaimer.

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Apr 11, 2023

Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment

Posted by in categories: biological, chemistry, genetics, robotics/AI

Enzyme-catalyzed replication of nucleic acid sequences is a prerequisite for the survival and evolution of biological entities. Before the advent of protein synthesis, genetic information was most likely stored in and replicated by RNA. However, experimental systems for sustained RNA-dependent RNA-replication are difficult to realise, in part due to the high thermodynamic stability of duplex products and the low chemical stability of catalytic RNAs. Using a derivative of a group I intron as a model for an RNA replicase, we show that heated air-water interfaces that are exposed to a plausible CO2-rich atmosphere enable sense and antisense RNA replication as well as template-dependent synthesis and catalysis of a functional ribozyme in a one-pot reaction. Both reactions are driven by autonomous oscillations in salt concentrations and pH, resulting from precipitation of acidified dew droplets, which transiently destabilise RNA duplexes. Our results suggest that an abundant Hadean microenvironment may have promoted both replication and synthesis of functional RNAs.

© 2023. The Author(s).

Conflict of interest statement.

Apr 10, 2023

Toward understanding the communication in sperm whales

Posted by in categories: biological, robotics/AI

The recent success of machine learning (ML) methods in answering similar questions in human languages (Natural Language Processing or NLP) is related to the availability of large-scale datasets. The effort of creating a biological dataset in a format, level of detail, scale, and time span amenable to ML-based analysis is capital intensive and necessitates a multidisciplinary expertise to develop, deploy, and maintain specialized hardware to collect acoustic and behavioral signals, as well as software to process and analyze them, develop linguistic models that reveal the structure of animal communication and ground it in behavior, and finally perform playback experiments to attempt bidirectional communication for validation ( Figure 1 ). Yet, the deployment of graphics processing unit’s (GPU) is following a trajectory akin to Moore’s Law ( https://openai.com/blog/ai-and-compute) and, at the same time, the success of such an endeavor could potentially yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research. One of the main drivers of progress making deep learning successful has been the availability of large (both labeled and unlabeled) datasets (and of architectures capable of taking advantage of such large data). To build a more complete picture and capture the full range of a species’ behavior, collecting datasets containing measurements across a broad set of factors is essential. In turn, setting up infrastructure that allows for the collection of broad and sizable datasets would facilitate studies that allow the autonomous discovery of the meaning-carrying units of communication.

A dedicated interdisciplinary initiative toward a detailed understanding of animal communication could arguably be made with a number of species as its focus. Birds, primates, and marine mammals have all given insight into the capacity of animal communication. In some ways, the collective understanding of the capacity for and faculty of communication in non-humans has been built through experimentation and observation across a wide number of taxa ( Fitch, 2005 ; Hauser et al., 2002). The findings on both the underlying neurobiological systems underpinning communicative capacity, and the complexity and diversity of the communication system itself often mirror our ability with which to work with a given species, or the existence of prominent long-term field research programs.

Animal communication researchers have conducted extensive studies of various species, including spiders (e.g. Elias et al., 2012 ; Hebets et al., 2013), pollinators (e.g Kulahci et al., 2008), rodents (e.g Ackers and Slobodchikoff, 1999 ; Slobodchikoff et al., 2009), birds (e.g Baker, 2001 ; Griesser et al., 2018), primates (e.g. Clarke et al., 2006 ; Jones and Van Cantfort, 2007 ; Leavens, 2007 ; Ouattara et al., 2009 ; Schlenker et al., 2016 ; Seyfarth et al., 1980), and cetaceans (e.g Janik, 2014 ; Janik and Sayigh, 2013), showing that animal communication involves diverse strategies, functions, and hierarchical components, and encompasses multiple modalities. Previous research efforts often focused on the mechanistic, computational, and structural aspects of animal communication systems. In human care, there have been several successful attempts of establishing a dialogue with birds (e.g.

Apr 10, 2023

New Chip Expands the Possibilities for AI

Posted by in categories: biological, mathematics, physics, robotics/AI

Illuminating mathematics, physics, biology and computer science research through public service journalism.

Page 35 of 196First3233343536373839Last