Menu

Blog

Archive for the ‘physics’ category: Page 42

Mar 12, 2023

Decoding the Brain

Posted by in categories: nanotechnology, neuroscience, physics

How does the brain retrieve memories, articulate words, and focus attention? Recent advances have provided a newfound ability to decipher, sharpen, and adjust electrical signals relevant to speech, attention, memory and emotion. Join Brian Greene and leading neuroscientists György Buzsáki, Edward Chang, Michael Halassa, Michael Kahana and Helen Mayberg for a thrilling exploration of how we’re learning to read and manipulate the mind.

The Kavli Prize recognizes scientists for their seminal advances in astrophysics, nanoscience, and neuroscience — topics covered in the series “The Big, the Small, and the Complex.” This series is sponsored by The Kavli Foundation and The Norwegian Academy of Science and Letters.

Continue reading “Decoding the Brain” »

Mar 12, 2023

The Nobel Prize in Physics 1973

Posted by in categories: materials, physics

Was divided, one half jointly to Leo Esaki and Ivar Giaever ‘for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively’ and the other half to Brian David Josephson ‘for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects’

Mar 12, 2023

Physicists explore mysteries of strange metals

Posted by in category: physics

Physicists are learning more about the bizarre behavior of “strange metals,” which operate outside the normal rules of electricity.

Theoretical physicist Yashar Komijani, an assistant professor at the University of Cincinnati, contributed to an international experiment using a strange metal made from an alloy of ytterbium, a . Physicists in a lab in Hyogo, Japan, fired radioactive gamma rays at the strange metal to observe its unusual electrical behavior.

Led by Hisao Kobayashi with the University of Hyogo and RIKEN, the study was published in the journal Science. The experiment revealed unusual fluctuations in the strange metal’s .

Mar 11, 2023

Bizarre Properties of Strange Metals Unlocked by Physics Experiment

Posted by in categories: materials, physics

Physicists at the University of Cincinnati have contributed to an international experiment on strange metals made from an alloy of ytterbium, a rare earth metal. The study involved firing radioactive gamma rays at the strange metal to observe its unusual electrical behavior. The experiment revealed unusual fluctuations in the strange metal’s electrical charge, furthering the understanding of the bizarre behavior of strange metals that operate outside the normal rules of electricity.

International team finds unusual electrical behavior in material that holds promise for new technology.

Physicists at the University of Cincinnati (UC) are learning more about the bizarre behavior of “strange metals,” which operate outside the normal rules of electricity.

Mar 10, 2023

Long-Sought Math Proof Unlocks More Mysterious ‘Modular Forms’

Posted by in categories: mathematics, physics

Using “refreshingly old” tools, mathematicians resolved a 50-year-old conjecture about how to categorize important functions called modular forms, with consequences for number theory and theoretical physics.

Mar 9, 2023

Astrophysicists shed new light on the state of the Universe 13 billion years ago

Posted by in categories: physics, space

Tracing 13 billion years of history by the light of ancient quasars.

Mar 9, 2023

‘Revolutionary’ blue crystal resurrects hope of room temperature superconductivity

Posted by in categories: computing, physics

Has the quest for room temperature superconductivity finally succeeded? Researchers at the University of Rochester (U of R), who previously were forced to retract a controversial claim of room temperature superconductivity at high pressures, are back with an even more spectacular claim. This week in they report a new material that superconducts at room temperature—and not much more than ambient pressures.

“If this is correct, it’s completely revolutionary,” says James Hamlin, a physicist at the University of Florida who was not involved with the work. A room temperature superconductor would usher in a century-long dream. Existing superconductors require expensive and bulky chilling systems to conduct electricity frictionlessly, but room temperature materials could lead to hyperefficient electricity grids and computer chips, as well as the ultrapowerful magnets needed for levitating trains and fusion power.

But given the U of R group’s recent retraction, many physicists won’t be easily convinced. “I think they will have to do some real work and be really open for people to believe it,” Hamlin says. Jorge Hirsch, a physicist at the University of California, San Diego, and a vociferous critic of the earlier work, is even more blunt. “I doubt [the new result], because I don’t trust these authors.”

Mar 9, 2023

Viable superconducting material created at low temperature and low pressure

Posted by in categories: chemistry, computing, engineering, physics

In a historic achievement, University of Rochester researchers have created a superconducting material at both a temperature and pressure low enough for practical applications.

“With this material, the dawn of ambient superconductivity and applied technologies has arrived,” according to a team led by Ranga Dias, an assistant professor of mechanical engineering and physics. In a paper in Nature, the researchers describe a nitrogen-doped lutetium hydride (NDLH) that exhibits superconductivity at 69 degrees Fahrenheit (20.5 degrees Celsius) and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Continue reading “Viable superconducting material created at low temperature and low pressure” »

Mar 8, 2023

Scientists invent superconductive material that works at practical temperatures

Posted by in categories: engineering, physics

Ktsimage/iStock.

“With this material, the dawn of ambient superconductivity and applied technologies has arrived,” said the press release, which was published today by a team led by Ranga Dias, an assistant professor of mechanical engineering and physics.

Mar 8, 2023

Unlocking the Secrets of Water-Ion Interactions in Layered Materials

Posted by in categories: biological, chemistry, nanotechnology, physics

Studying the relationship between the arrangement of water molecules incorporated into layered materials like clays and the arrangement of ions within these materials has been a difficult experiment to conduct.

However, researchers have now succeeded in observing these interactions for the first time by utilizing a technique commonly used for measuring extremely small masses and molecular interactions at the nanoscale.

The nanoscale refers to a length scale that is extremely small, typically on the order of nanometers (nm), which is one billionth of a meter. At this scale, materials and systems exhibit unique properties and behaviors that are different from those observed at larger length scales. The prefix “nano-” is derived from the Greek word “nanos,” which means “dwarf” or “very small.” Nanoscale phenomena are relevant to many fields, including materials science, chemistry, biology, and physics.

Page 42 of 267First3940414243444546Last