Menu

Blog

Archive for the ‘life extension’ category: Page 43

Sep 2, 2023

Can Epigenetic Reprogramming Rejuvenate Cells & Extend Lifespan?

Posted by in categories: biotech/medical, genetics, life extension

In this article, the fourth installment of our five-part series on different pathways of aging, we look at the rejuvenation of cells, tissues, and stem cells, a topic that has been gaining increasing popularity thanks to remarkable advancements in the field of epigenetic reprogramming. Recent research suggests that despite the accumulation of molecular damage over time, cells and tissues can indeed undergo rejuvenation. We’ll be exploring key subjects such as Epigenetic reprogramming, PGC1a and GSK3β, Telomerase (TERT), as well as Apoptosis and senescence. Join us on this enlightening journey as we uncover the groundbreaking discoveries that are shaping the future of aging research.

The idea for reprogramming was simple yet beautiful. Children are born young, even though their parents are old, because they have undergone a process of cellular reprogramming that leads to rejuvenation.

Sep 2, 2023

-Electricity of Life💡: Wonders of Bioelectricity and Regenerative Biology Prof Michael Levin

Posted by in categories: bioengineering, biotech/medical, life extension

Welcome to another exciting episode of our podcast series, where we dive deep into the world of science and innovation! In today’s episode, we have the privilege of interviewing Prof. Michael Levin, a renowned researcher in the fields of bioelectricity, regenerative biology, and biophysics.

Prof. Levin is the director of the Allen Discovery Center at Tufts University and has been making groundbreaking discoveries that are revolutionizing the field of regenerative medicine. His research focuses on understanding the electrical communication within and between cells, and how this communication can be harnessed for tissue repair and regeneration.

Continue reading “-Electricity of Life💡: Wonders of Bioelectricity and Regenerative Biology Prof Michael Levin” »

Sep 2, 2023

NYU Researchers Developed a New Artificial Intelligence Technique to Change a Person’s Apparent Age in Images while Maintaining their Unique Identifying Features

Posted by in categories: life extension, privacy, robotics/AI

AI systems are increasingly being employed to accurately estimate and modify the ages of individuals using image analysis. Building models that are robust to aging variations requires a lot of data and high-quality longitudinal datasets, which are datasets containing images of a large number of individuals collected over several years.

Numerous AI models have been designed to perform such tasks; however, many encounter challenges when effectively manipulating the age attribute while preserving the individual’s facial identity. These systems face the typical challenge of assembling a large set of training data consisting of images that show individual people over many years.

The researchers at NYU Tandon School of Engineering have developed a new artificial intelligence technique to change a person’s apparent age in images while ensuring the preservation of the individual’s unique biometric identity.

Sep 1, 2023

Harvard/MIT Scientists Claim New “Chemical Cocktails” Can Reverse Aging

Posted by in categories: biotech/medical, chemistry, genetics, life extension

That’s why we were struck to see a team of scientists that includes researchers from the name-brand Harvard Medical School and Massachusetts Institute of Technology sounding off about what they say are promising new leads, published this month in the journal Aging.

“We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age,” reads the paper. “Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.”

Sounds big, right? The researchers claim they pinpointed six treatments that can reverse aging in cells and turn them into a more “youthful state,” according to a press release from Aging’s publisher, without causing dangerous unregulated cell growth.

Aug 31, 2023

A doctor who claims to have reversed his ‘biological age’ by 20 years shares his favorite Costco items

Posted by in categories: biological, life extension

Dr. Mark Hyman recommended Costco items including nuts, canned seafood, and fermented goods.

Aug 31, 2023

Dublin Biostasis Evening

Posted by in category: life extension

A short report on our satellite meeting at the Longevity Summit 2023.

Aug 31, 2023

Discovered an aging “brake pedal”?

Posted by in categories: biotech/medical, life extension, neuroscience

How does the research conducted by Lige Leng at the Institute of Neuroscience of Xiamen University in China (I link it to you here)? It all starts with the study of the “inflamed brain”: many diseases of old age are associated with low-level chronic inflammation in the brain, organs, joints and circulatory system. A phenomenon sometimes called “inflammaging”.


You know it: over time all of our body’s repair systems deteriorate, our DNA and proteins accumulate damage, metabolism stumbles and cells stop doing their job. That’s life, beauty.

We’re all on our way to the exit, but research on worms, flies, mice and monkeys show that going at this speed isn’t inevitable. Diet and lifestyle changes (and, perhaps, upcoming anti-aging drugs) can curb decay and give us many more years of life, especially healthy life.

Continue reading “Discovered an aging ‘brake pedal’?” »

Aug 31, 2023

Suppression of FOXO1 attenuates inflamm‐aging and improves liver function during aging

Posted by in categories: biotech/medical, genetics, life extension

Several factors contribute to the development of inflamm-aging, including genetic susceptibility, visceral obesity, microbiota and gut permeability, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by mitochondrial dysfunction, immune cells dysregulation, and chronic infection (Ferrucci & Fabbri, 2018). The immune system becomes gradually dysregulated during aging, leading to elevated blood levels of pro-inflammatory mediators, such as TNFα, IL6, and C-reactive protein (Harris et al., 1999 ; Mooradian et al., 1991). Energy homeostasis also becomes dysregulated with aging, which results in the redistribution of subcutaneous fat to visceral regions and contributes to inflammation (Bouchard et al., 1993 ; Chumlea et al., 1989 ; Curtis et al., 2005). Metabolism-induced inflammation, also known as metaflammation, shares similarities with inflamm-aging, including the elevation of certain circulating pro-inflammatory cytokines (Prattichizzo et al., 2018). Therefore, the molecules that play a key role in the regulation of metabolic homeostasis potentially mediate the development of chronic inflammation during aging.

Forkhead box O1 (FOXO1) transcription factor has been indicated to be involved in the regulation of nutrient metabolism and energy homeostasis (Cheng et al., 2009 ; InSug et al., 2015 ; Matsumoto et al., 2007 ; Yang et al., 2019 ; Zhang et al., 2012). Deletion of hepatic Foxo1 improves glucose homeostasis in insulin resistant mice (Dong et al., 2008). FOXO1 inhibition by AS1842856 attenuates hepatic steatosis in diet-induced obesity mice (Ding et al., 2020). In mature macrophages, FOXO1 promotes inflammation through the activation of TLR4-and STAT6-mediated signaling pathways (Fan et al., 2010 ; Lee et al., 2022). In invertebrates, DAF-16, the Foxo homolog gene, mediates the effect of insulin/IGF signaling on lifespan (Ogg et al., 1997). Overexpression of FOXO in Drosophila and C.elegans increases their lifespan (Giannakou et al., 2004 ; Henderson & Johnson, 2001). However, studies in mammalians show that FOXO1 does not have a significant correlation with longevity (Chiba et al., 2009 ; Kleindorp et al., 2011). Considering the role of FOXO1 in regulating glucose metabolism and inflammation, we hypothesize that FOXO1 plays an important role in the regulation of aging-induced inflammation and dysregulation of glucose homeostasis.

Liver is an important metabolic organ that plays a key role in maintaining whole-body nutrient homeostasis by regulating energy metabolism, clearing xenobiotic and endobiotic, and synthesizing necessary molecules (Rui, 2014). As a result, aging-induced changes in liver contribute to systemic susceptibility to aging-related diseases. Different types of liver cells, including hepatocytes, endothelial cells, hepatic stellate cells (HSC), and macrophages, are all affected by the aging process (Hunt et al., 2019). However, most studies on liver aging focused on whole-liver tissue, which is mainly composed of parenchymal cells, hepatocytes. Thus, the effects of aging on liver nonparenchymal cells (NPCs) are less understood. In this study, we used bulk RNA-Seq and single-cell RNA (scRNA)-Seq technologies to analyze aging-induced changes, and the role of FOXO1 in aging-related processes in both whole-liver and individual liver cells, particularly liver macrophages. We found that insulin resistance, liver fat accumulation, liver inflammation, and systemic inflammation were significantly aggravated in old mice. Additionally, aging significantly increased pro-inflammatory response in Kupffer cells (KCs) and induced a functional quiescence in monocyte-derived macrophages (MDMs). FOXO1 activity was significantly enhanced in the livers of old mice and FOXO1 inhibition improved insulin resistance, hepatic steatosis, and inflammation in old mice. Furthermore, we found that FOXO1 inhibition attenuated aging-induced pro-inflammation in KCs and had a limited effect on aging-induced functional quiescence in MDMs. Taken together, this study indicates that FOXO1 plays an important role in the liver aging processes and suggests that FOXO1 is a potential therapeutic target for the treatment of aging-induced chronic diseases.

Aug 30, 2023

Induced Pluripotent Stem Cells For Age-Related Macular Degeneration

Posted by in categories: biotech/medical, life extension

Stem cells can be classified based on their ability to specialize. Totipotent stem cells can become any tissue in the body, pluripotent stem cells can become any cell type except for a complete organ, and multipotent stem cells can only differentiate into specific tissue types.

Induced pluripotent stem cells (iPSCs) show promise in treating retinal degenerative diseases. They are created by reprogramming adult cells using Yamanaka factors, allowing them to revert to an embryonic state. These cells provide a virtually unlimited cell source for research and potential therapies.

Scientists are researching several diseases and drug development applications for these cells, highlighting the characteristics that make them an ideal therapy for macular degeneration.

Aug 30, 2023

Scientists find the last remnants of the human genome that were missing in the Y chromosome

Posted by in categories: biotech/medical, genetics, life extension

More than 20 years ago, the human genome was first sequenced. While the first version was full of “holes” representing missing DNA sequences, the genome has been gradually improved in successive rounds. Each has increased the quality of the genome and, in so doing, resolved most of the blank spaces that prevented us from having a complete reading of our genetic material.

The fundamental difficulty researchers faced in reading the from end to end is the enormous number of repeated sequences that populate it. The 20,000 or so genes we humans have occupy barely 2% of the . The remaining 98% is essentially made up of these families of repeated sequences, mobile elements known as transposons and retrotransposons, and—to a lesser but functionally important extent— regulatory sequences. These function as switches that determine when and where genes are turned on and off.

In March 2022, a major revision of the genome was published in the journal Science. An international consortium of researchers known as “T2T” (telomere to telomere, which are the ends of chromosomes) used a novel strategy based a type of cell (CHM13) that retains only one copy of each chromosome.

Page 43 of 598First4041424344454647Last