Menu

Blog

Archive for the ‘space’ category: Page 25

Nov 9, 2023

Apollo astronaut Frank Borman, who first orbited moon, dies at age 95

Posted by in category: space

Frank Borman commanded two early NASA missions including Apollo 8, the first to orbit the moon. He was a no-nonsense astronaut known for his keen attention to detail and duty to country.

Nov 9, 2023

False alarm: Rogue star steers away, won’t hit us in 29,000 years

Posted by in category: space

“That’s one less cosmic hazard we have to worry about!”

A huge cosmic catastrophe has been averted!A massive rogue dead star was initially predicted to brush through our solar system roughly 29,000 years from now. Fortunately, updated calculations show that our planet will be spared from the damage…


Nazarii Neshcherenskyi/iStock.

Continue reading “False alarm: Rogue star steers away, won’t hit us in 29,000 years” »

Nov 9, 2023

Planetary Formation Dynamics Unveiled: Webb Telescope’s Surprising Findings

Posted by in category: space

A recent study published in The Astrophysical Journal Letters discusses a groundbreaking discovery using the Mid-Infrared Instrument (MIRI) onboard NASA’s James Webb Space Telescope (JWST) to reveal the processes responsible for planetary formation, specifically the transition of water from the colder, outer regions of a protoplanetary disk to the warmer, inner regions. This study was conducted by an international team of researchers and holds the potential to help astronomers better understand the complex processes behind planetary formation, which could also help us better understand how our own solar system formed billions of years ago.

“Webb finally revealed the connection between water vapor in the inner disk and the drift of icy pebbles from the outer disk,” said Dr. Andrea Banzatti, who is an assistant professor of physics at Texas State University and lead author of the study. “This finding opens up exciting prospects for studying rocky planet formation with Webb!”

Using MIRI, which is sensitive to water vapor in protoplanetary disks, the researchers analyzed four protoplanetary disks orbiting Sun-like stars, although much younger, at only 2–3 million years old, and the four disks analyzed consisted of two compact disks and two extended disks. The compact disks were hypothesized to deliver ice-covered pebbles to a distance equivalent to the orbit of Neptune in our solar system, and the extended disks were hypothesized to deliver ice-covered pebbles as far out as six times Neptune’s orbit. The goal of the study was to determine if the compact disks exhibited a greater amount of water in the inner regions of the disk where rocky planets would theoretically form.

Nov 8, 2023

This is a first: An exoplanet in a polar circumbinary disk surrounding two stars

Posted by in category: space

We live in an age of exoplanet discovery. One thing we’ve learned is not to be surprised by the kinds of exoplanets we keep discovering. We’ve discovered planets where it might rain glass or even iron, planets that are the rocky core remnants of gas giants stripped of their atmospheres, and drifting rogue planets untethered to any star.

Now, astronomers have uncovered evidence of an in a circumbinary disk around a . The remarkable thing about this discovery is that the disk is in a polar configuration. That means the exoplanet moves around its binary star in a circumpolar orbit, and this is the first one scientists have found.

AC Herculis (AC Her) is a binary star about 4,200 light-years away. The primary star is well-studied, while its partner is invisible. It has a polar circumbinary disk, which is unusual but not unheard of. In a new paper, a team of researchers presents evidence for the polar circumbinary exoplanet.

Nov 8, 2023

Data from NASA’s WISE used to preview Lucy Mission’s Asteroid Dinkinesh

Posted by in category: space

NASA’s Lucy mission will soon have its first asteroid encounter as the spacecraft travels through deep space en route to Jupiter’s orbit. But before the spacecraft passes 265 miles (425 kilometers) from the surface of the small asteroid Dinkinesh, researchers have used 13-year-old infrared data from NASA’s Wide-field Infrared Survey Explorer (WISE) to support the mission’s flyby. Their new study provides updated estimates of the asteroid’s size and albedo—a measurement of surface reflectivity—that could help scientists better understand the nature of some near-Earth objects.

Located between Mars and Jupiter, the main asteroid belt is home to most asteroids in our solar system, including Dinkinesh, which is following an orbit around the sun that places it near Lucy’s path. The Lucy mission is using the Dinkinesh encounter as an opportunity to test systems and procedures that are designed to keep the asteroid within the science instruments’ fields of view as the spacecraft flies past at 10,000 mph (4.5 kilometers per second). This will help the team prepare for the mission’s primary objective: investigating the Jupiter Trojan asteroids, a population of primitive small bodies orbiting in tandem with Jupiter.

In the new study, published in the Astrophysical Journal Letters, University of Arizona researchers used observations made by the WISE spacecraft, which serendipitously scanned Dinkinesh in 2010 during its prime mission. Managed by NASA’s Jet Propulsion Laboratory in Southern California, WISE launched on Dec. 14, 2009, to create an all-sky infrared map of the universe.

Nov 8, 2023

Solution To Complex Light Problem Shows That Time Can Only Go Forward

Posted by in categories: information science, space

Oh yea? I just learned the steps to copperhead road so… whatever.


Light is something in our world that we are very familiar with, and yet it can still throw some incredible curveballs when you look at it in detail. A newly discovered one comes from a pretty well-established phenomenon: what happens when light passes through an interface? That could be glass, water, or something completely different. The solution for that has long been established, but scientists have now found something weird going on in the middle.

As light goes through an interface, its speed changes. The solution for the behavior of light on one side of the interface or the other is the well-established standard wave equation. They can be linked with no problem (a piecewise continuous solution) but this still doesn’t explain what happens at the interface itself. There, the wave should experience an acceleration that is not accounted for by the current solution.

Continue reading “Solution To Complex Light Problem Shows That Time Can Only Go Forward” »

Nov 7, 2023

Direct detection of atomic oxygen on the dayside and nightside of Venus

Posted by in category: space

Atomic oxygen is important for the photochemistry and energy balance of Venus’s atmosphere, but it was not directly observed on the dayside of Venus. Here, the authors show direct detection of atomic oxygen on the both dayside and nightside of Venus by measuring its ground-state transition at 4.74 THz.

Nov 7, 2023

Mars’ Geological History Unveiled: Curiosity Rover’s 39th Sample Reveals Clues

Posted by in categories: climatology, robotics/AI, space

A recent study published in the Journal of Geophysical Research: Planets examines the 39th drilling sample collected by NASA’s Curiosity rover on Mars from a rock named “Sequoia”, which comes shortly after the pioneering robot passed its 4,000th sol, or Martian day, exploring the Red Planet. This sample was found to contain starkeyite, which is a magnesium sulfate mineral analogous to extremely dry climates such as Mars and holds the potential to help researchers better understand the climate of the Red Planet, specifically pertaining to how it got so dry.

Image of the drill hole made by NASA’s Curiosity Mars rover collect a sample on Oct. 17, 2023, the 3,980th Martian day, or sol, of the mission. (Credit: NASA/JPL-Caltech/MSSS)

“The types of sulfate and carbonate minerals that Curiosity’s instruments have identified in the last year help us understand what Mars was like so long ago. We’ve been anticipating these results for decades, and now Sequoia will tell us even more,” said Dr. Ashwin Vasavada, who is a project scientist on the Curiosity mission at NASA’s Jet Propulsion Laboratory (NASA JPL) and one of almost three dozen co-authors on the study.

Nov 7, 2023

WeWork: US firm once valued at $47 billion files for bankruptcy

Posted by in category: space

Once valued at $47 billion, the company is now worth $50 million and trading of its stock paused on Monday.

After many tumultuous months, coworking space provider WeWork filed for Chapter 11 bankruptcy protection in the US and Canada, CNBC

Founded in 2010, WeWork became synonymous with coworking spaces after operating in more than 700 properties worldwide. The company offers its customers the option to rent offices for as little as a day, plush with fancy furniture, and opportunities to add meeting rooms as and when required.

Nov 7, 2023

NASA Getting Ready to Launch Wooden Satellite

Posted by in categories: materials, space

A team of researchers at Kyoto University has been hard at work on a satellite made of wood — and they say it’s now scheduled to launch into space next summer in a joint mission between Japan’s JAXS space agency and NASA.

While it may sound like an odd choice of materials, they say wood is a surprisingly suitable material for space.

“When you use wood on Earth, you have the problems of burning, rotting, and deformation, but in space, you don’t have those problems: there is no oxygen in space, so it doesn’t burn, and no living creatures live in them, so they don’t rot,” Koji Murata, a Kyoto University researcher who’s been working on the project, told CNN.

Page 25 of 905First2223242526272829Last