Menu

Blog

Archive for the ‘cosmology’ category: Page 350

Apr 8, 2016

From IT to black holes: Nano-control of light pioneers new paths

Posted by in categories: computing, cosmology, nanotechnology

Australia did it again! They have developed a chip for the nano-manipulation of light which establishes the NextGen of Optical Storage and processing.


An Australian research team has created a breakthrough chip for the nano-manipulation of light, paving the way for next gen optical technologies and enabling deeper understanding of black holes.

Led by Professor Min Gu at RMIT University in Melbourne, Australia, the team designed an integrated nanophotonic chip that can achieve unparalleled levels of control over the angular momentum (AM) of light.

Continue reading “From IT to black holes: Nano-control of light pioneers new paths” »

Apr 6, 2016

Supermassive black holes may be lurking everywhere in the universe

Posted by in category: cosmology

A near-record supermassive black hole discovered in a sparse area of the local universe indicates that these monster objects — this one equal to 17 billion suns — may be more common than once thought, according to University of California, Berkeley, astronomers.

Until now, the biggest supermassive black holes — those with masses around 10 billion times that of our sun — have been found at the cores of very large in regions loaded with other large galaxies. The current record holder, discovered in the Coma Cluster by the UC Berkeley team in 2011, tips the scale at 21 billion and is listed in the Guinness Book of World Records.

The newly discovered black hole is in a galaxy, NGC 1600, in the opposite part of the sky from the Coma Cluster in a relative desert, said the leader of the discovery team, Chung-Pei Ma, a UC Berkeley professor of astronomy and head of the MASSIVE Survey, a study of the most and black holes in the local universe with the goal of understanding how they form and grow supermassive.

Continue reading “Supermassive black holes may be lurking everywhere in the universe” »

Apr 5, 2016

Controversial Dark Matter Claim Faces Ultimate Test

Posted by in categories: cosmology, materials

Multiple teams finally have the material they need to repeat an enigmatic experiment.

By Davide Castelvecchi, Nature magazine on April 5, 2016.

Read more

Apr 4, 2016

Mysterious Fast Radio Burst ‘Afterglow’ Was A Supermassive Black Hole

Posted by in category: cosmology

The next step was to then look a bit more closely at the host galaxy. In this case, the scientists found that there was a persistent radio source in the galaxy. If it had been an afterglow, it should have faded away rather than continuing as the scientists observed.

“What the other team saw was nothing unusual,” said Edo Berger, one of the researchers involved in the new study. “The radio emission from this source goes up and down, but it never goes away. That means it can’t be associated with the fast radio burst.”

So what did the emission come from? It was likely from an active center of a galaxy. This center is powered by a supermassive black hole, similar to our own Milky Way galaxy. Twin jets shot out from the black hole, and can create a constant source of the radio waves that the researchers spotted.

Continue reading “Mysterious Fast Radio Burst ‘Afterglow’ Was A Supermassive Black Hole” »

Apr 3, 2016

New link between quantum computing and black hole may solve information loss problem

Posted by in categories: computing, cosmology, quantum physics

Some more words on this idea that black holes are quantum computers.

Read more

Apr 1, 2016

Rivers of stars could point to cold dark matter in the Milky Way halo

Posted by in categories: cosmology, physics

Dark matter’s effect on stellar streams should be measurable, says astrophysicist.

Read more

Mar 31, 2016

Is the black hole at our galaxy’s centre a quantum computer? – Sabine Hossenfelder Essays

Posted by in categories: computing, cosmology, quantum physics

Black-hole computing.

Might nature’s bottomless pits actually be ultra-efficient quantum computers? That could explain why data never dies.

by Sabine Hossenfelder

Continue reading “Is the black hole at our galaxy’s centre a quantum computer? – Sabine Hossenfelder Essays” »

Mar 29, 2016

There’s A Powerful And Mysterious Signal Coming From The Core Of The Milky Way

Posted by in categories: cosmology, particle physics

Dark matter is one of the greatest revelations in modern physics. Even though it hasn’t been directly detected yet, we know that it makes up around five-sixths of the total matter in the universe, binding much of it together in dramatic ways. It is this matter that stops galaxies from being torn apart as they spin.

As a new study published in the journal Physics of the Dark Universe notes, dark matter can also be destroyed. A signature of dark matter’s annihilation could potentially reveal what it was composed of in the first place, and this team of researchers from Harvard University think they’ve found one right in the heart of our own Milky Way.

Scientists are still debating what dark matter may actually be composed of, and one recent suggestion implies the particles are so dense that they are on the verge of becoming miniature black holes. Whatever they turn out to be, many astrophysicists think that these particles share a property with “ordinary” matter: they come in two flavors, matter and antimatter. When matter encounters antimatter, both are destroyed in a powerful blast that emits high-energy radiation.

Continue reading “There’s A Powerful And Mysterious Signal Coming From The Core Of The Milky Way” »

Mar 26, 2016

Astronomers Identify a Signature of Dark Matter Annihilation

Posted by in categories: cosmology, particle physics

By studying the spatial distribution of gamma-ray emission in the Milky Way, astronomers believe they have identified a signature of dark matter annihilation.

We live in a dramatic epoch of astrophysics. Breakthrough discoveries like exoplanets, gravity waves from merging black holes, or cosmic acceleration seem to arrive every decade, or even more often. But perhaps no discovery was more unexpected, mysterious, and challenging to our grasp of the “known universe” than the recognition that the vast majority of matter in the universe cannot be directly seen. This matter is dubbed “dark matter,” and its nature is unknown. According to the latest results from the Planck satellite, a mere 4.9% of the universe is made of ordinary matter (that is, matter composed of atoms or their constituents). The rest is dark matter, and it has been firmly detected via its gravitational influence on stars and other normal matter. Dark energy is a separate constituent.

Understanding this ubiquitous yet mysterious substance is a prime goal of modern astrophysics. Some astronomers have speculated that dark matter might have another property besides gravity in common with ordinary matter: It might come in two flavors, matter and anti-matter, that annihilate and emit high energy radiation when coming into contact. The leading class of particles in this category are called weakly interacting massive particles (WIMPS). If dark matter annihilation does occur, the range of options for the theoretical nature of dark matter would be considerably narrowed.

Continue reading “Astronomers Identify a Signature of Dark Matter Annihilation” »

Mar 25, 2016

Scientists plan to capture the first picture of a black hole’s Event Horizon, the point of no return

Posted by in category: cosmology

Read more