Menu

Blog

Archive for the ‘climatology’ category

May 10, 2024

The Impact of Soil Saturation on Woodland Creation: Insights from UK Uplands

Posted by in categories: climatology, sustainability

“There has been extensive talk about how larger trees respond to the effects of climate change,” said Dr. Thomas Murphy. “But these results show we need to factor in the response of young trees as well, especially if they are being envisioned as an integral part of the solution.”


Can climate change be fought using saturated soils, and what impacts would these soils have on newly planted trees? This is what a recent study published in Forest Ecology and Management hopes to address as a team of researchers from the University of Plymouth investigated how various soil saturation levels could influence the survival rates of newly planted trees meant to combat climate change. This study holds the potential to help scientists, conservationists, and legislators better understand the steps that can be taken to combat climate change without causing further harm to the environment.

The study involved planting acorns in four different soils: totally flooded, high saturation, medium saturation, and low saturation, with the water levels being just over eight-and-a-half inches (220 millimeters) beneath the acorns. In the end, the researchers discovered a zero-survivability rate for the totally flooded acorns while finding increased survivability rates for high saturation, medium saturation, and low saturation at 43 percent, 77 percent, and 83 percent, respectively. For the higher saturated acorns, the researchers also found decreased levels of leaf photosynthesis, root: shoot ratio, and decreased chances of late season shoot growth, as well.

Continue reading “The Impact of Soil Saturation on Woodland Creation: Insights from UK Uplands” »

May 10, 2024

Historical Perspective: The Dynamic Birth of the Modern Great Barrier Reef

Posted by in categories: climatology, computing, sustainability

“This study has given us an historical picture of how the emerging modern reef responded to huge environmental stress,” said Dr. Jody Webster.


What events caused the Great Barrier Reef to become what it is today, specifically over the course of the last six to eight thousand years, or just after the last Ice Age? This is what a recent study published in Quaternary Science Reviews hopes to address as a team of international researchers conducted an in-depth scientific analysis on various aspects of the Great Barrier Reef to ascertain the environmental factors that contributed to the Reef’s present conditions. This study holds the potential to help scientists better understand how reefs evolve over time and the environment’s role in their evolution.

For the study, the researchers drilled almost two dozen coral samples and analyzed them using a variety of methods, including computer tomography, scanning electron microscopy, and X-ray diffraction to ascertain yearly growth patterns within the coral samples. In the end, they determined that environmental factors, including increased water temperatures, ocean turbulence, and rising sea levels, led to increased nutrients, which contributed to the growth of the Great Barrier Reef, and is consistent with previous studies.

Continue reading “Historical Perspective: The Dynamic Birth of the Modern Great Barrier Reef” »

May 8, 2024

Ozone Dynamics on Proxima Centauri b: A Key to Habitability

Posted by in categories: chemistry, climatology, computing, space

How can studying an exoplanet’s ozone help astronomers better understand its habitability potential? This is what a recent study published in the Monthly Notices of the Royal Astronomical Society hopes to address as a team of international researchers investigated how an ozone on the nearest exoplanet to Earth, Proxima Centauri b, could influence its own climate over time. This study holds the potential to help astronomers better understand how an exoplanet’s ozone could influence its formation, evolution, and potential habitability, and could have implications on how astronomers study Earth-like exoplanets throughout the cosmos.

“Imagine a world where ozone affects temperature and wind speed and holds the key to a planet’s very habitability,” said Dr. Assaf Hochman, who is a senior lecturer in the Institute of Earth Sciences at the Hebrew University of Jerusalem and a co-author on the study. “Our study unveils this intricate connection and underscores the importance of considering interactive ozone and other photochemical species in our quest to understand Earth-like exoplanets.”

For the study, the researchers used a series of computer simulations to ascertain how an active ozone on Proxima Centauri b could influence the exoplanet’s climate and potential habitability. In the end, the researchers discovered that an ozone layer on Proxima Centauri b could greatly influence the temperature and wind circulation patterns throughout its atmosphere. Additionally, they also found altitude also played a high role in the atmospheric temperature and temperature variances, as well. The researchers emphasized how these findings could help future researchers better understand the potential habitability of an exoplanet, noting how a potential ozone layer on Proxima Centauri b could greatly influence its climate.

May 8, 2024

Tornadoes Are Coming in Bunches. Scientists Are Trying to Figure Out Why

Posted by in category: climatology

The number of tornadoes so far in the United States this year is just above average. But their distribution is changing.

May 8, 2024

An Ancient Maya Practice Could Be the Key to Growing Vegetables on Mars

Posted by in categories: climatology, space

If humans build settlements on Mars, how will they feed ourselves? Waiting on deliveries from Earth would take too long and costs would be exorbitant, since getting to the Red Planet is currently a nine-month one-way journey. On top of that, dehydrating foodstuff—the best preservation method for perishables sent to space—removes vital nutrients.

More than likely, Martian settlers will need to grow their own food.

Researchers are now exploring how best to optimize crop yield on Mars using intercropping, a technique perfected by Maya farmers centuries ago that involves growing multiple plants in close proximity to one another. Their findings—published this month in the journal Plos One—could not only benefit the pioneers who end up colonizing the Red Planet, but also farmers here on Earth amid a rapidly changing climate.

May 8, 2024

Nanoparticle catalysts convert carbon dioxide to carbon monoxide to make useful compounds

Posted by in categories: climatology, nanotechnology, sustainability

As a greenhouse gas, carbon dioxide (CO2) contributes to climate change as it accumulates in the atmosphere. One way to reduce the amount of unwanted CO2 in the atmosphere is to convert the gas into a useful carbon product that can be used to generate valuable compounds.

May 7, 2024

MIT Makes ‘Astonishing’ Discovery That Light Can Vaporize Water Without Heat–for Clean Energy and Desalination

Posted by in category: climatology

It’s not every year that a major discovery is made in the basic natural sciences of Earth, but using painfully precise measurements, MIT has written a new chapter in something that most people probably thought they knew completely: evaporation.

The scientists say the discovery could explain “mysterious measurements” in the literature of clouds which may increase the precision of climate modeling, while also aiding in industrial applications.

In this study, the discovery that evaporation can occur just with light and without heat was so unexpected and surprising that it was subjected to 14 different tests and measurements to try and disprove what the scientists observed.

May 1, 2024

Scientists Say New Material Can Suck Carbon Out of Atmosphere Faster Than Trees

Posted by in categories: climatology, computing, sustainability

A team of scientists in the United Kingdom say they’ve discovered a porous material that has the potential to store large quantities of greenhouse gases, making it a possible new tool in the arsenal to fight climate change.

The scientists detailed how they used computational models to develop this material in a newly published paper in the journal Nature Synthesis, arguing that certain features of the structure could make it excellent storage for carbon dioxide and sulphur hexafluoride, another powerful greenhouse gas.

“This is an exciting discovery because we need new porous materials to help solve society’s biggest challenges,” engineering professor Marc Little from Edinburgh’s Heriot-Watt University said in a statement about the research.

Apr 29, 2024

Peering Into the Heart of Clouds: NASA’s CloudSat Wraps a Revolutionary Journey

Posted by in categories: climatology, space travel

Over the course of nearly two decades, its powerful radar provided never-before-seen details of clouds and helped advance global weather and climate predictions.

CloudSat, a NASA mission that peered into hurricanes, tallied global snowfall rates, and achieved other weather and climate firsts, has ended its operations. Originally proposed as a 22-month mission, the spacecraft was recently decommissioned after almost 18 years observing the vertical structure and ice/water content of clouds.

Continue reading “Peering Into the Heart of Clouds: NASA’s CloudSat Wraps a Revolutionary Journey” »

Apr 28, 2024

New approach could make reusing captured carbon far cheaper, less energy-intensive

Posted by in categories: chemistry, climatology, economics, sustainability

Engineers at Georgia Tech have designed a process that converts carbon dioxide removed from the air into useful raw material that could be used for new plastics, chemicals, or fuels.

Their approach dramatically reduces the cost and energy required for these (DAC) systems, helping improve the economics of a process the researchers said will be critical to addressing .

The key is a new kind of catalyst and electrochemical reactor design that can be easily integrated into existing DAC systems to produce useful carbon monoxide (CO) gas. It’s one of the most efficient such design ever described in , according to lead researcher Marta Hatzell and her team. They have published the details in Energy & Environmental Science.

Page 1 of 13912345678Last