Menu

Blog

Archive for the ‘quantum physics’ category: Page 2

May 30, 2024

Let there be matter: Simulating the creation of matter from photon–photon collisions

Posted by in categories: particle physics, quantum physics

Year 2023 face_with_colon_three


A team led by researchers at Osaka University and University of California, San Diego has conducted simulations of creating matter solely from collisions of light particles. Their method circumvents what would otherwise be the intensity limitations of modern lasers and can be readily implemented by using presently available technology. This work might help experimentally test long-standing theories such as the Standard Model of particle physics, and possibly the need to revise them.

One of the most striking predictions of quantum physics is that can be generated solely from light (i.e., photons), and in fact, the astronomical bodies known as pulsars achieve this feat. Directly generating matter in this manner has not been achieved in a laboratory, but it would enable further testing of the theories of basic quantum physics and the fundamental composition of the universe.

Continue reading “Let there be matter: Simulating the creation of matter from photon–photon collisions” »

May 29, 2024

Research team demonstrates modular, scalable hardware architecture for a quantum computer

Posted by in categories: computing, engineering, particle physics, quantum physics

The team spent years perfecting an intricate process for manufacturing two-dimensional arrays of atom-sized qubit microchiplets and transferring thousands of them onto a carefully prepared complementary metal-oxide semiconductor (CMOS) chip. This transfer can be performed in a single step.

“We will need a large number of qubits, and great control over them, to really leverage the power of a quantum system and make it useful. We are proposing a brand new architecture and a fabrication technology that can support the scalability requirements of a hardware system for a quantum computer,” says Linsen Li, an and computer science (EECS) graduate student and lead author of a paper on this architecture.

May 29, 2024

Physicists Demonstrate Room Temp Quantum Storage in 2D Material

Posted by in categories: particle physics, quantum physics

Microscopic chinks in material just several atoms thick have the potential to advance a multitude of quantum technologies, new research shows – getting us closer to the widespread use of quantum networks and sensors.

Right now, storing quantum data in the spin properties of electrons, known as spin coherence, requires a very particular and delicate laboratory setup. It’s not something you can do without a carefully controlled environment.

Here, an international team of researchers managed to demonstrate observable spin coherence at room temperature, using the tiny defects in a layered 2D material called Hexagonal Boron Nitride (hBN).

May 29, 2024

Speeding up calculations that reveal how electrons interact in materials

Posted by in categories: energy, quantum physics

Materials scientists and engineers would like to know precisely how electrons interact and move in new materials and how the devices made with them will behave. Will the electrical current flow easily within the material? Is there a temperature at which the material will become superconducting, enabling current to flow without a power source? How long will the quantum state of an electron spin be preserved in new electronic and quantum devices?

May 28, 2024

Researchers’ Study Suggests That, Once Upon a Time, There Was No Entanglement

Posted by in categories: computing, particle physics, quantum physics

Ask anyone working in quantum computing and they may tell you they have been dealing with the frustratingly contrarian and intricately delicate state of entanglement since the beginning of time. However, a new study suggests this might be impossible. In fact, entanglement may have been absent in the earliest moments of the universe, researchers are reporting — a hypothesis that would — if validated — challenge our understanding of quantum mechanics and the nature of time itself.

The research, detailed in a paper by Jim Al-Khalili, of the University of Surrey and Eddy Keming Chen, University of California, San Diego and published on the pre-print server ArXiv, explores the so-called entanglement past hypothesis. In the study, the researchers explore why time only flows in one direction, a fundamental concept in both quantum physics and thermodynamics.

According to the researchers the concept of quantum entanglement, where two particles become so deeply linked that their properties seem to remain interconnected regardless of the distance between them, is central to modern quantum mechanics. It’s also a key ingredient for the potential of quantum computers to tackle massively complex calculations. It’s also why quantum computing is so vexing, because entanglement can be disrupted by external influences, leading to a process known as decoherence.

May 28, 2024

Programmable quantum emitter formation in silicon

Posted by in category: quantum physics

Quantum emitters in Si show promise for applications in quantum information processing and communication due to their potential as spin-photon interfaces. Jhuria et al. report the formation of selected telecom emitters in Si using local writing and erasing by fs laser pulses and annealing in a hydrogen atmosphere.

May 28, 2024

Flawed proof rocks quantum information theory

Posted by in category: quantum physics

After finding a mistake in the generalised quantum Stein’s lemma, researchers including CQT’s Marco Tomamichel are working through the consequences.


The proof of the generalised quantum Stein’s lemma has a gap. Image credit: Shutterstock.com/randy andy

Continue reading “Flawed proof rocks quantum information theory” »

May 28, 2024

Hayato Saigo (Nagahama bio Univ.) Mathematical Principles of Consciousness Science

Posted by in categories: mathematics, neuroscience, quantum physics, science

Noncommutative probability and categorical structure Quantum-like revolut…

May 28, 2024

Boson sampler uses atoms rather than photons

Posted by in categories: evolution, particle physics, quantum physics

System charts the evolution of complex quantum states.

May 28, 2024

The Quantum Twist: Unveiling the Proton’s Hidden Spin

Posted by in categories: computing, particle physics, quantum physics

New research combining experimental and computational approaches provides deeper insights into proton spin contributions from gluons.

Nuclear physicists have been tirelessly exploring the origins of proton spin. A novel approach, merging experimental data with cutting-edge calculations, has now illuminated the spin contributions from gluons—the particles that bind protons. This advancement also sets the stage for three-dimensional imaging of the proton structure.

Joseph Karpie, a postdoctoral associate at the Center for Theoretical and Computational Physics (Theory Center) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, led this groundbreaking research.

Page 2 of 75212345678Last