Dr. Garrett T. Kenyon
The ScienceDaily article World-record Supercomputer Mimics Human Sight Brain Mechanisms said
Less than a week after Los Alamos National Laboratory’s Roadrunner supercomputer began operating at world-record petaflop-per-second data-processing speeds, Los Alamos researchers are already using the computer to mimic extremely complex neurological processes.
Welcome to the new frontier of research at Los Alamos: science at the petascale.
The prefix “peta” stands for a million billion, also known as a quadrillion. For the Roadrunner supercomputer, operating at petaflop/s performance means the machine can process a million billion calculations each second. In other words, Roadrunner gives scientists the ability to quickly render mountainous problems into mere molehills, or model systems that previously were unthinkably complex.
The PetaVision Synthetic Cognition team responsible for the theory and codes run on Roadrunner includes: Luis Bettencourt, Garrett Kenyon, Ilya Nemenman, John George, Steven Brumby, Kevin Sanbonmatsu, and John Galbraith, all of Los Alamos; Steven Zuker of Yale University; and James DiCarlo from Massachusetts Institute of Technology.
Garrett T. Kenyon, Ph.D. is Technical Staff Member, Biological and
Quantum Physics (P-21), Los Alamos National Laboratory (LANL).
His research topics include:
Extreme Synergy: Recent results at Princeton indicate that even
relatively weak pairwise
correlations between retinal neurons can, in aggregate, produce
astonishing levels of order in the resulting firing patterns, in much
the same way that the interactions between local domains can lead to
global ordering of ferromagnetic materials below the Curie temperature.
Garrett has recently been investigating the hypothesis that the presence
of
similarly realistic pairwise correlations could allow downstream targets
to more rapidly reconstruct visual stimuli from retinal spike
trains.
His findings, reported in a preprint entitled
Extreme Synergy, suggest
that information regarding the local intensity of each pixel can in many
cases be widely distributed across a large population containing
hundreds of retinal ganglion cells all responding to the same contiguous
stimulus, a non-local encoding strategy that may have evolved to
minimize the number of spikes necessary to support rapid image
reconstruction.
Self-Repairing Synapses: One of the great unsolved mysteries of
neuroscience is how we are able to retain long-term memories despite the
known volatility of individual synapses, which are subject to ongoing
random changes due to both intrinsic and extrinsic sources. He suggests
that a robust solution to this problem requires a fundamental
reassessment of what types of information can and cannot be learned by
biological systems.
Specifically, he suggests that the
decision
surfaces
maintained by any given pattern of synaptic weights, in order to remain
stable under random fluctuations, must correspond to separable
independent components in the raw environmental input. The
problem of
storing memories over long periods, despite random fluctuations in
individual synaptic weights, can thus be solved by exploiting the
structure present in the environment itself. As a corollary, his
findings suggest that in a purely random environment, long-term storage
of information would be impossible.
High-Performance Neural Computing: Simulating large,
semi-realistic
neural systems will clearly require massive computational resources. He
is developing a suite of object-oriented tools that will allow any
neural simulator to maximum advantage of high-end computer clusters.
Garrett authored
Extreme Synergy in a Retinal Code: Spatiotemporal Correlations Enable
Rapid Image Reconstruction and
A model of long-term memory storage in the cerebellar
cortex: A possible role for plasticity at parallel fiber
synapses onto stellate/basketinterneurons, and
coauthored
A Model of high frequency oscillatory potentials in retinal ganglion
cells,
Effects of firing synchrony on signal propagation in layered
networks,
Correlated Firing Improves Stimulus Discrimination in a Retinal
Model, and
A Mathematical Model of the Cerebellar-Olivary System II: Motor
Adaptation Through Systematic Disruption of Climbing Fiber
Equilibrium.
Garrett earned his B.A. in Physics at the University of California at
Santa Cruz in 1984, his M.S. in Physics at the University of Washington
in 1986, and his Ph.D. in Physics at the University of Washington in
1990.