Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Tailoring Mesoporous Silica-Coated Silver Nanoparticles and Polyurethane-Doped Films for Enhanced Antimicrobial Applications

Can surface charge reversal boost AgNP efficacy? đŸ§«Functionalizing silica-coated silver nanoparticles with amine groups significantly enhances activity against Salmonella and E. coli in polyurethane films.

Read more.

The global increase in multidrug-resistant bacteria poses a challenge to public health and requires the development of new antibacterial materials.

Sleep disruption damages gut’s self-repair ability via stress signals from brain: A biological chain reaction

Chronic sleep disruption doesn’t just leave people tired and irritable. It may quietly undermine the gut’s ability to repair itself, increasing vulnerability to serious digestive diseases. A new study from the University of California, Irvine, the University of Chinese Academy of Sciences and the China Agricultural University reveals, step by step, how disturbed sleep causes the brain to send harmful signals to the intestines, ultimately damaging the stem cells responsible for maintaining a healthy gut lining.

The research uncovers a previously unknown biological chain reaction linking the brain’s sleep center to intestinal health. The findings are published in Cell Stem Cell and offer new insight into why people with chronic sleep problems are more likely to develop gastrointestinal disorders such as inflammatory bowel disease, diabetes-related gut complications and chronic inflammation.

Physicians have long known that irregular or insufficient sleep is associated with a wide range of health problems, from mood disorders to high blood pressure. Yet how changes in sleep can directly harm organs that do not sleep themselves, such as the intestines, has remained largely elusive. This study answers that question by tracing the damage from its neurological origins all the way to the gut’s regenerative machinery.

We Learned a Bit More About How Human Brains Became So Complex

Support this channel on Patreon to help me make this a full time job: https://www.patreon.com/whatdamath (Unreleased videos, extra footage, DMs, no ads)
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.
Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX

Hello and welcome! My name is Anton and in this video, we will talk about a few studies that explain how the human brain developed complexity.
Links:
https://linkinghub.elsevier.com/retrieve/pii/S0092867423009170
https://www.science.org/doi/10.1126/science.ade5645
https://www.biorxiv.org/content/10.1101/2024.05.01.592020v5.full.pdf.
https://www.science.org/doi/10.1126/science.abm1696
https://www.nature.com/articles/s41559-022-01925-6
https://www.microbiologyresearch.org/content/journal/mgen/10
01322#tab2
Other videos:
https://www.youtube.com/watch?v=qyMbXCzcS0k.
https://www.youtube.com/watch?v=e10yOoP-x3g.

#brain #biology #evolution.

0:00 Discoveries about the evolution of the brain.
1:20 800 Million years ago
 how it all began.
3:10 Did nervous system evolve multiple times? Comb jellies.
4:45 Big brains — primates vs octopuses.
9:20 Human brains and human intelligence genes.
11:20 Gut microbes and fuel for the brain.
12:20 Conclusions and implications.

Enjoy and please subscribe.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

The hardware used to record these videos:

What Ultimately Is There? Metaphysics and the Ruliad

Stephen Wolfram shares surprising new ideas and results from a scientific approach to metaphysics. Discusses time, spacetime, computational irreducibility, significance of the observer, quantum mechanics and multiway systems, ruliad, laws of nature, objective reality, existence, mathematical reality.

Neural and computational mechanisms underlying one-shot perceptual learning in humans

In one-shot perceptual learning, what we see can be dramatically altered by a single past experience. Using psychophysics, fMRI, iEEG, and DNNs, the authors identify neural and computational mechanisms underlying this remarkable ability in humans.

/* */