How neuronal function is shaped by mitochondria.
Despite the established links between mitochondrial dysfunction and neuronal disorders, the specialization of mitochondria to support the specific demands of neurons has been less extensively explored.
Proper mitochondrial positioning influences an array of neuronal functions and processes, from neurodevelopment through synaptic transmission, due to the participation of mitochondria as local ATP suppliers, Ca2+ sinks, and sites of neurotransmitter synthesis.
In neurons, mitochondria are also crucial for local translation in axons and dendrites, to which they provide both local ATP and mRNA transport. In this way, mitochondria emerge as centers for neuronal plasticity sciencenewshighlights ScienceMission https://sciencemission.com/Mitochondrial-specialization
Neurons are specialized cells designed to process information and transmit it, often across long distances. In many neurons, the axonal volume far exceeds the somato-dendritic volume, creating a need for long-range transport and local polarization mechanisms. In addition, action potential firing and restoration of ionic gradients, as well as dynamic changes in synaptic plasticity, further increase the energetic demands of neurons. In this review, we highlight the roles mitochondria play in vertebrate neuronal biology and how mitochondrial functionality is tuned to support the unique demands of neurons. We cover the influence of mitochondrial positioning, ATP generation and Ca2+ buffering on neuronal function, and explore the role of mitochondria in neurotransmitter metabolism and local protein translation.