A new type of brain implant may have implications for both brain research and future treatments of neurological diseases such as epilepsy. Researchers from DTU, the University of Copenhagen, University College London, and other institutions have developed a long, needle-thin brain electrode with channels—a so-called microfluidic Axialtrode (mAxialtrode), named for its ability to distribute functional interfaces along the length of the implant, enabling both neural signal recording and precisely targeted medication delivery across different brain regions. The research results have been published in Advanced Science.
The technology has primarily been developed for basic research into the brain. It can help researchers better understand how signals move across brain layers, for example in epilepsy, memory, or decision-making. In the longer term, the researchers point out that the mAxialtrode may be important for treatment—for example, in targeted drug delivery combined with electrical or light-based stimulation of specific areas of the brain.
Postdoc Kunyang Sui, who led the development of the mAxialtrode concept together with Associate Professor Christos Markos, emphasizes that it has made it possible to combine several functions in a single implant which makes brain research less invasive and more precise.







