Menu

Blog

Archive for the ‘nanotechnology’ category: Page 10

Apr 1, 2024

New Alzheimer’s treatment slows disease with nanoparticles

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Alzheimer’s is the most common form of dementia, affecting an estimated 6.7 million people in the US. Researchers seeking an effective treatment for the affliction have, over the last 30 years, focused their efforts on a protein known as amyloid beta (A-beta), which form clumps in the brain.

These clumps of A-beta proteins attack nerve cells, resulting initially in short-term memory impairment and later in the loss of judgment, language and thought processes.

Other researchers have previously developed an antibody which can identify and attach itself to A-beta proteins and delay the progression of Alzheimer’s in patients with early-to-mild cognitive impairment by up to 36%.

Mar 31, 2024

Frontiers: The Internet comprises a decentralized global system that serves humanity’s collective effort to generate

Posted by in categories: biotech/medical, education, internet, nanotechnology, Ray Kurzweil, robotics/AI, supercomputing

Process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a “human brain/cloud interface” (“B/CI”), would be based on technologies referred to here as “neuralnanorobotics.” Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain’s ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood–brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human–brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as “transparent shadowing” (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family.

“We’ll have nanobots that… connect our neocortex to a synthetic neocortex in the cloud… Our thinking will be a… biological and non-biological hybrid.”

— Ray Kurzweil, TED 2014

Mar 31, 2024

Unveiling the future of nanostructures with soft matter magic

Posted by in categories: futurism, nanotechnology

As traditional top-down approaches like photolithography reach their limitations in creating nanostructures, scientists are shifting their focus toward bottom-up strategies. Central to this paradigm shift is the self-assembly of homogeneous soft matter, a burgeoning technique with the potential to produce complex nano-patterns on a vast scale.

Mar 30, 2024

New carbon nanotube transistor enhances sensitivity and resolution of molecule glasses

Posted by in categories: biological, computing, nanotechnology

Researchers have developed a carbon nanotube (CNT) transistor for molecule glasses that facilitates detailed examination of molecular interactions. This innovative technology is poised to open a fresh research direction in nanotechnology and molecular biology.

Mar 30, 2024

A simple, scalable method using light to 3D print helical nanostructures

Posted by in categories: 3D printing, biotech/medical, nanotechnology

A new fabrication process for helical metal nanoparticles provides a simpler, cheaper way to rapidly produce a material essential for biomedical and optical devices, according to a study by University of Michigan researchers.

Mar 30, 2024

Researchers overcome lattice mismatch issue to advance optoelectronic applications

Posted by in categories: innovation, nanotechnology

A research team from City University of Hong Kong (CityU) recently successfully achieved lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires for electronic and optoelectronic applications. This breakthrough addresses crucial technological challenges related to the lattice mismatch problem in the growth of high-quality heterostructure semiconductors, leading to enhanced carrier transport and photoelectric properties.

Mar 30, 2024

Selective operation of enhancement and depletion modes of nanoscale field-effect transistors

Posted by in categories: computing, nanotechnology

Nanoscale transistors are in demand for efficient digital circuits, and biasing of each device is critical. These stringent biasing conditions can be relaxed by obtaining precise values of the threshold voltages of the transistor. This leads to more tolerant logic states to the electrical noise.

To meet the requirements of reduced , CMOS field-effect transistors (FETs) are fabricated such that they operate in enhancement (E) mode, i.e., there are no free charge carriers in the channel at zero gate . On the other hand, depletion (D) mode transistors have higher currents than enhancement mode due to ample charge carrier density.

In contrast to switching applications of FET, for high-frequency applications, off-state of FET is not a compulsory requirement. In fact, the presence of a channel at zero gate bias is advantageous to obtain high transconductance at lower voltages. For Si FETs, the enhancement or depletion modes were determined at the fabrication step of ion implantation doping. However, it is challenging to implement this solution for the new generation of thin materials like organic semiconductors and 2D materials.

Mar 30, 2024

By Harnessing the Unlimited Vacuum Energy In Space, We Could Finally Reach Light Speed

Posted by in categories: energy, nanotechnology, space

Invisible vacuum energy is all around us. We could use it to power propulsion, enhance nanostructures, and build levitating devices.

Mar 29, 2024

Revolutionary Silicon Spikes Destroy 96% of Viruses on Contact

Posted by in categories: biotech/medical, nanotechnology

An international research team led by RMIT University has designed and manufactured a virus-killing surface that could help control disease spread in hospitals, labs, and other high-risk environments. The surface made of silicon is covered in tiny nanospikes that skewer viruses on contact.

Lab tests with the hPIV-3 virus – which causes bronchitis, pneumonia, and croup – showed 96% of the viruses were either ripped apart or damaged to the point where they could no longer replicate to cause infection. These impressive results, featured on the cover of top nanoscience journal ACS Nano, show the material’s promise for helping control the transmission of potentially dangerous biological material in laboratories and healthcare environments.

Mar 28, 2024

3D printed shapeshifting nanoparticles

Posted by in categories: materials, nanotechnology

Stanford materials engineers have 3D printed tens of thousands of hard-to-manufacture nanoparticles long predicted to yield promising new materials that change form in an instant.

Page 10 of 283First7891011121314Last