Space Technology – Lifeboat News: The Blog https://lifeboat.com/blog Safeguarding Humanity Tue, 02 Jun 2020 15:55:34 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.1 Elon Musk’s Starlink growing bigger and bigger https://lifeboat.com/blog/2020/06/elon-musks-starlink-growing-bigger-and-bigger Tue, 02 Jun 2020 15:55:34 +0000 https://lifeboat.com/blog/?p=108044 SpaceX launching again this week, if all goes as planned.
Starlink deployment in orbit.

SpaceX is at it again. Love it or hate it, Starlink is growing again. The company is getting ready to launch the next batch of 60 satellites into orbit in just a few days.  The original launch was postponed until after the successful launch of the crew dragon Demo-2 mission for NASA.

 Now that the astronauts successfully docked with the International Space Station, SpaceX turns its focus back on Starlink.  This launch, originally planned to launch before the Crew Dragon Demo-2 mission, now looks promising for a launch this week.


The constellation consists of thousands of mass-produced small satellites in low Earth orbit adds up quickly. Each Falcon 9 launch gets packed full of sixty Starlink satellites. 60 satellites neatly fit in both size and mass limitations of the Falcon 9’s reusable configuration.  Elon’s company delivered more than 420 satellites into orbit to date. 
SpaceX now plans to loft the next batch into space Wednesday around 9:25 p.m. EDT.  Visitors at the Cape Canaveral’s Complex 40 launch pad should be able to witness the launch so long as the weather holds out… and the weather is looking promising.   


A one-hour launch window for the Starlink mission opening at 8:55 p.m. EDT (0055 GMT).  If the launch gets scrubbed, SpaceX will cycle again for another attempt.  The prior attempt at launch got scrubbed because of Tropical Storm Arthur and the associated high winds.  As an additional complication for SpaceX launches, the rough seas in the recovery area where SpaceX’s drone ship waits made a landing of the Falcon 9 risky.

Worries from Astronomers: Starlink changes the night sky

November 11 at 9:56 a.m. EST, 14:56 UTC, SpaceX launched 60 Starlink satellites from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. Credit SpaceX.

This mission debuts a novel Starlink satellite not seen before.  SpaceX, in response to concerned astronomers, includes additional features to reduce reflectivity.  A new sunshade visor should help reduce the reflection of light and spoiling the night sky for astronomers.

The albedo of the spacecraft measured quite high coupled with the angle of light reflecting off the craft gave rise to visible strings of satellites streaking across the sky.  The visor blocks sunlight from reaching the portions of the spacecraft, making them less visible from the ground. Additionally, SpaceX plans an adjusted flight trajectory and angle relative to the ground.

SpaceX plans Starlink service in the Northern U.S. and Canada starting in 2020.  After initial market deployment in North America, Starlink rapidly expanding coverage to create truly near global coverage of the populated world by 2021.

SpaceX also focused on debris mitigation.  The Starlink website claims the network is on the leading edge of on-orbit debris mitigation, meeting or exceeding all regulatory and industry standards.  At the end of the satellite’s life, the onboard ion engine propulsion system slowly lowers the altitude over the course of a few months. Should the propulsion system becomes inoperable, satellites still burn up in Earth’s atmosphere within 1–5 years.  (there are satellites still orbiting Earth launched in the 1960s.)   

The Starlink constellation, Phase 1, first orbital shell: 72 orbits with 22 each, 1,584 satellites at 550 km altitude.

Krypton… isn’t that related to Superman?

No, Starlink’s power does not come from Superman’s homeworld. Rather it does draw energy from our sun with a single solar panel which powers the Krypton ion drive. Krypton is an inert noble gas with the symbol Kr and atomic number 36. There are other satellites and spacecraft using ion engines, but Starlink is the first-ever Krypton propelled spacecraft flown. 

Starlink does have sort of a superpower.  Starlink satellites have a built-in star tracker to allow the satellite to self orient. If that wasn’t cool enough, the satellites also can perform automatic collision avoidance thanks to some nifty new technology from the Department of Defense’s debris tracking system.  This technology allows Starlink satellites to quickly, without the need for human intervention, avoid collisions reliably.

The US military also plans to test out Starlink for their own purposes. The United States Army signed a Cooperative Research and Development Agreement contract with SpaceX to test and assess Starlink’s broadband communication in military platforms. The three-year agreement with the Army will determine if the network is reliable for future military operations. The low latency of Starlink and global coverage makes Starlink an ideal option for Military communications. Even if one satellite is disabled, Starlink satellite number in the thousands once complete.

]]>
Keeping Humans Safe in Space: Meet Robot Torsos Justin, Robonaut, SAR-400, & AILA https://lifeboat.com/blog/2013/02/keeping-humans-safe-in-space-meet-robot-torsos-justin-robonaut-sar-400-aila Sat, 23 Feb 2013 08:58:11 +0000 http://lifeboat.com/blog/?p=6691 JUSTIN.SPACE.ROBOT.GUY
A Point too Far to Astronaut

It’s cold out there beyond the blue. Full of radiation. Low on breathable air. Vacuous.
Machines and organic creatures, keeping them functioning and/or alive — it’s hard.
Space to-do lists are full of dangerous, fantastically boring, and super-precise stuff.

We technological mammals assess thusly:
Robots. Robots should be doing this.

Enter Team Space Torso
As covered by IEEE a few days ago, the DLR (das German Aerospace Center) released a new video detailing the ins & outs of their tele-operational haptic feedback-capable Justin space robot. It’s a smooth system, and eventually ground-based or orbiting operators will just strap on what look like two extra arms, maybe some VR goggles, and go to work. Justin’s target missions are the risky, tedious, and very precise tasks best undertaken by something human-shaped, but preferably remote-controlled. He’s not a new robot, but Justin’s skillset is growing (video is down at the bottom there).

Now, Meet the Rest of the Gang:SPACE.TORSO.LINEUPS
NASA’s Robonaut2 (full coverage), the first and only humanoid robot in space, has of late been focusing on the ferociously mundane tasks of button pushing and knob turning, but hey, WHO’S IN SPACE, HUH? Then you’ve got Russia’s elusive SAR-400, which probably exists, but seems to hide behind… an iron curtain? Rounding out the team is another German, AILA. The nobody-knows-why-it’s-feminized AILA is another DLR-funded project from a university robotics and A.I. lab with a 53-syllable name that takes too long to type but there’s a link down below.

Why Humanoid Torso-Bots?
Robotic tools have been up in space for decades, but they’ve basically been iterative improvements on the same multi-joint single-arm grabber/manipulator. NASA’s recent successful Robotic Refueling Mission is an expansion of mission-capable space robots, but as more and more vital satellites age, collect damage, and/or run out of juice, and more and more humans and their stuff blast into orbit, simple arms and auto-refuelers aren’t going to cut it.

Eventually, tele-operable & semi-autonomous humanoids will become indispensable crew members, and the why of it breaks down like this: 1. space stations, spacecraft, internal and extravehicular maintenance terminals, these are all designed for human use and manipulation; 2. what’s the alternative, a creepy human-to-spider telepresence interface? and 3. humanoid space robots are cool and make fantastic marketing platforms.

A space humanoid, whether torso-only or legged (see: Robotnaut’s new legs), will keep astronauts safe, focused on tasks machines can’t do, and prevent space craziness from trying to hold a tiny pinwheel perfectly still next to an air vent for 2 hours — which, in fact, is slated to become one of Robonaut’s ISS jobs.

Make Sciencey Space Torsos not MurderDeathKillBots
As one is often want to point out, rather than finding ways to creatively dismember and vaporize each other, it would be nice if we humans could focus on the lovely technologies of space travel, habitation, and exploration. Nations competing over who can make the most useful and sexy space humanoid is an admirable step, so let the Global Robot Space Torso Arms Race begin!

“Torso Arms Race!“
Keepin’ it real, yo.

• • •

DLR’s Justin Tele-Operation Interface:

• • •

[JUSTIN TELE-OPERATION SITUATION — IEEE]

Robot Space Torso Projects:
[JUSTIN — GERMANY/DLR • FACEBOOK • TWITTER]
[ROBONAUT — U.S.A./NASA • FACEBOOK • TWITTER]
[SAR-400 — RUSSIA/ROSCOSMOS — PLASTIC PALS • ROSCOSMOS FACEBOOK]
[AILA — GERMANY/DAS DFKI]

This piece originally appeared at Anthrobotic.com on February 21, 2013.

]]>
Google’s 100,000 Stars & the Paradigmatic Disruption of Large-Scale Innovation Revisited https://lifeboat.com/blog/2012/11/googles-100000-stars-the-paradigmatic-disruption-of-large-scale-innovation-revisited https://lifeboat.com/blog/2012/11/googles-100000-stars-the-paradigmatic-disruption-of-large-scale-innovation-revisited#comments Tue, 20 Nov 2012 15:19:15 +0000 http://lifeboat.com/blog/?p=6264
The 100,000 Stars Google Chrome Galactic Visualization Experiment Thingy

So, Google has these things called Chrome Experiments, and they like, you know, do that. 100,000 Stars, their latest, simulates our immediate galactic zip code and provides detailed information on many of the massive nuclear fireballs nearby.


Zoom in & out of interactive galaxy, state, city, neighborhood, so to speak.

It’s humbling, beautiful, and awesome. Now, is 100, 000 Stars perfectly accurate and practical for anything other than having something pretty to look at and explore and educate and remind us of the enormity of our quaint little galaxy among the likely 170 billion others? Well, no — not really. But if you really feel the need to evaluate it that way, you are a unimaginative jerk and your life is without joy and awe and hope and wonder and you probably have irritable bowel syndrome. Deservedly.

The New Innovation Paradigm Kinda Revisited
Just about exactly one year ago technosnark cudgel Anthrobotic.com was rapping about the changing innovation paradigm in large-scale technological development. There’s chastisement for Neil deGrasse Tyson and others who, paraphrasically (totally a word), have declared that private companies won’t take big risks, won’t do bold stuff, won’t push the boundaries of scientific exploration because of bottom lines and restrictive boards and such. But new business entities like Google, SpaceX, Virgin Galactic, & Planetary Resources are kind of steadily proving this wrong.

Google in particular, a company whose U.S. ad revenue now eclipses all other ad-based business combined, does a load of search-unrelated, interesting little and not so little research. Their mad scientists have churned out innovative, if sometimes impractical projects like WaveLively, and Sketchup. There’s the mysterious Project X, rumored to be filled with robots and space elevators and probably endless lollipops as well. There’s Project Glass, the self-driving cars, and they have also just launched Ingress, a global augmented reality game.

In contemporary America, this is what cutting-edge, massively well-funded pure science is beginning to look like, and it’s commendable. So, in lieu of an national flag, would we be okay with a SpaceX visitor center on the moon? Come on, really — a flag is just a logo anyway!

Let’s hope Google keeps not being evil.

[VIA PC MAG]
[100,000 STARS ANNOUNCEMENT — CHROME BLOG]

(this post originally published at www.anthrobotic.com)

]]>
https://lifeboat.com/blog/2012/11/googles-100000-stars-the-paradigmatic-disruption-of-large-scale-innovation-revisited/feed 2