ISS – Lifeboat News: The Blog https://lifeboat.com/blog Safeguarding Humanity Sun, 16 Sep 2018 16:34:05 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.1 ISS hole: We will look back on Sept 2018 https://lifeboat.com/blog/2018/09/iss-hole-we-will-look-back-on-sept-2018 Sat, 15 Sep 2018 18:27:20 +0000 https://lifeboat.com/blog/?p=82599 Someday, people across the world will look back on September 2018, much like we look back on the terror attacks of 9/11 or the safe return of Apollo 13 in 1970. They are touchstone moments in world history. For Americans, they are as indelible as Pearl Harbor, the assassination of John F. Kennedy or the first moon landing.

So, what happened just now? The month isn’t even half over, and the only events we hear about on the news are related to Hurricane Florence and Paul Manafort. (In case you live under a rock or are reading this many years hence, the hurricane made landfall on the coast of the Carolinas, and the lobbyist / political consultant / lawyer / Trump campaign chairman pled guilty to charges and has agreed to cooperate in the continuing Mueller investigation).

No—I am not referring to either event on the USA east coast. I am referring to a saga unfolding 254 miles above the Earth—specifically a Whodunit mystery aboard the International Space Station (ISS). NASA hasn’t seen this level of tawdry intrigue since astronaut Lisa Marie Nowak attacked a rival for another astronaut’s affection—driving across the country in a diaper to confront her love interest.

So What is the Big Deal This Week?!

It didn’t begin as a big deal—and perhaps this is why mainstream news services are slow to pick up on the latest information. But now, in my opinion, it is a very big deal.

A small hole was discovered on a Russian Soyuz spacecraft (a lifeboat) attached to the International Space Station. That hole, about the size of a pea, resulted in the slow decompression of atmosphere. The air that our astronauts breathe was leaking out of ISS and into the void of space.

So far, the story is unremarkable. Ground scientists issued two comfort statements about the apparent accident. They addressed the possible cause and the potential risk:

  1. This small hole could have occurred on the ground (during construction). Alternatively, it could be the result of a micro-meteorite or even man-made space debris. Perhaps a fleck of varnish peeled off of a satellite and collided at high speed with the massive, orbiting space station. No problem. The ISS and each commuter spacecraft that dock with it are designed to sustain collisions with small particles—even ones that punch a pea-sized hole through the hull.
  2. Air pressure in the ISS and in each spacecraft is only 1 atmosphere. This type of small leak could effectively be stemmed by simply applying duct tape.

The initial news event was interesting to space buffs, but it didn’t seem to present a significant threat to our astronauts, nor require a massive technical response. You may recall that duct tape played a critical role in getting the Apollo 13 astronauts safely back to Earth almost 50 years ago. The crisis that they faced was far worse. The solution required extensive impromptu engineering both in Houston and up in the spacecraft. What an awesome historical echo and footnote to an event that captured the hearts and minds of so many people back in 1970.

But the story does not end with a piece of duct tape. In fact, it just got much more interesting…

After a few days, NASA revealed that the hole was intentionally drilled, and the deed probably occurred while the ship was docked at the space station. Since there is no log of activity with tools in this section of the laboratory, it strongly suggests an act of sabotage by one of the astronauts on board.

And now, we have some new information: Guided by ground engineers, astronauts fished an endoscope through the hole to inspect the outside of the spacecraft. Guess what?! That same drill bit damaged the meteorite shield which stands 15 mm beyond the pressurized hull of the spacecraft. This will add significant risk to anyone traveling back to earth in the damaged ship.

One theory is that a member of the crew wanted to create the conditions to more quickly return to Earth. Now, that return trip may present and elevated risk to occupants.
This story has not yet concluded, of course. It will likely conclude with tragedy or triumph. In the better scenario, no one will die—but successful return and reentry will be followed by a criminal conviction or court martial. I am having difficulty envisioning an alternate outcome.
Read about it here. The story is unfolding, but the details are utterly fascinating.

Philip Raymond co-chairs CRYPSA, hosts the New York Bitcoin Event and is keynote speaker at Cryptocurrency Conferences. He sits on the New Money Systems board of Lifeboat Foundation and is a top Bitcoin writer at Quora. Book a presentation or consulting engagement.

]]>
It’s surprisingly difficult to play guitar in space — By Mike Murphy | Quartz https://lifeboat.com/blog/2016/01/its-surprisingly-difficult-to-play-guitar-in-space-by-mike-murphy-quartz Mon, 18 Jan 2016 14:28:58 +0000 http://lifeboat.com/blog/?p=20845 hadfield

“Canadian astronaut Chris Hadfield, who lived aboard the International Space Station from 2012 to 2013, recently explained to CBC Music how difficult it was to play guitar in space, along with some pointers for future space musicians.”

Read more

]]>
Get Ready To 3D Print Your Own Satellites In Space — By Neel V. Patel | Inverse https://lifeboat.com/blog/2015/08/get-ready-to-3d-print-your-own-satellites-in-space-by-neel-v-patel-inverse https://lifeboat.com/blog/2015/08/get-ready-to-3d-print-your-own-satellites-in-space-by-neel-v-patel-inverse#comments Wed, 19 Aug 2015 22:42:24 +0000 http://lifeboat.com/blog/?p=16300  

made-in-spaces-first-3d-printer-sent-to-the-iss
“A California startup called Made In Space wants to make 3D for use in orbit. The idea is to give consumers the opportunity to allow their own satellites to be built right there, several hundred miles above Earth’s surface. Plans are in motion to send up a printer capable of accepting printing instructions from the public and building whatever someone on the ground has in mind.”

Read more

]]>
https://lifeboat.com/blog/2015/08/get-ready-to-3d-print-your-own-satellites-in-space-by-neel-v-patel-inverse/feed 1
The Next Space Race https://lifeboat.com/blog/2014/05/the-next-space-race Thu, 08 May 2014 21:31:42 +0000 http://lifeboat.com/blog/?p=11006 Yesterday’s program, The Next Space Race, on Bloomberg TV was an excellent introduction to the commercial aerospace companies, SpaceX, the Sierra Nevada Company (SNC), and Boeing. The following are important points, at the stated times, in the program:

0.33 mins: The cost of space travel has clipped our wings.
5:18 mins: How many people knew Google before they started?
7:40 mins: SpaceX costs, full compliment, 4x per year at $20 million per astronaut.
11:59 mins: Noisy rocket launch, notice also the length of the hot exhaust is several times the length of the rocket.
12:31 mins: One small step for man, one giant leap for mankind.
12:37 mins: Noisy shuttle launch, notice also the length of the hot exhaust is several times the length of the rocket.
13:47 mins: OPF-3, at one time the largest building in the world at 129 million cubic feet.
16:04 mins: States are luring private companies to start up in their states.
16:32 mins: NASA should be spending its money on exploration and missions and not maintenance and operations.
17:12 mins: The fair market value of OPF-3 is about $13.5 million.
17:19 mins: Maintenance cost is $100,000 per month
17:47 mins: Why Florida?
18:55 mins: International Space Station (ISS) cost $60B and if including the Shuttle program, it cost $150B.
19:17 mins: The size of the commercial space launch business.
21:04 mins: Elon Musk has put $100 million of his own money into SpaceX.
21:23 mins: The goals of NASA and private space do not conflict.

Summary:
1. Cost of ISS is $60B, total cost including the Shuttle program is $150B.

2. SpaceX cost is $20M per astronaut (for 7 astronauts) or a launch cost of $140 million per launch at $560 million per year for 4 launches per year.

3. The next space race is about money.

4. NASA will give a multi billion dollar contract to private space companies to ferry humans & cargo into space and back.

5. Orbiter Processing Facility 3 (OPF-3) valued at $13.5million, and an estimated area of 207,000 sq ft gives a value of $65.22/sq ft.

6. With a maintenance costs of $100,000 gives a per sq ft maintenance costs of $0.48/sq ft/month or $5.80/sq ft/year.

7. Another reason for the Cape Canaveral NASA launch site is the mandatory no/low population down range for rocket launches. At Cape Canaveral this down range is the Atlantic Ocean.

]]>
Keeping Humans Safe in Space: Meet Robot Torsos Justin, Robonaut, SAR-400, & AILA https://lifeboat.com/blog/2013/02/keeping-humans-safe-in-space-meet-robot-torsos-justin-robonaut-sar-400-aila Sat, 23 Feb 2013 08:58:11 +0000 http://lifeboat.com/blog/?p=6691 JUSTIN.SPACE.ROBOT.GUY
A Point too Far to Astronaut

It’s cold out there beyond the blue. Full of radiation. Low on breathable air. Vacuous.
Machines and organic creatures, keeping them functioning and/or alive — it’s hard.
Space to-do lists are full of dangerous, fantastically boring, and super-precise stuff.

We technological mammals assess thusly:
Robots. Robots should be doing this.

Enter Team Space Torso
As covered by IEEE a few days ago, the DLR (das German Aerospace Center) released a new video detailing the ins & outs of their tele-operational haptic feedback-capable Justin space robot. It’s a smooth system, and eventually ground-based or orbiting operators will just strap on what look like two extra arms, maybe some VR goggles, and go to work. Justin’s target missions are the risky, tedious, and very precise tasks best undertaken by something human-shaped, but preferably remote-controlled. He’s not a new robot, but Justin’s skillset is growing (video is down at the bottom there).

Now, Meet the Rest of the Gang:SPACE.TORSO.LINEUPS
NASA’s Robonaut2 (full coverage), the first and only humanoid robot in space, has of late been focusing on the ferociously mundane tasks of button pushing and knob turning, but hey, WHO’S IN SPACE, HUH? Then you’ve got Russia’s elusive SAR-400, which probably exists, but seems to hide behind… an iron curtain? Rounding out the team is another German, AILA. The nobody-knows-why-it’s-feminized AILA is another DLR-funded project from a university robotics and A.I. lab with a 53-syllable name that takes too long to type but there’s a link down below.

Why Humanoid Torso-Bots?
Robotic tools have been up in space for decades, but they’ve basically been iterative improvements on the same multi-joint single-arm grabber/manipulator. NASA’s recent successful Robotic Refueling Mission is an expansion of mission-capable space robots, but as more and more vital satellites age, collect damage, and/or run out of juice, and more and more humans and their stuff blast into orbit, simple arms and auto-refuelers aren’t going to cut it.

Eventually, tele-operable & semi-autonomous humanoids will become indispensable crew members, and the why of it breaks down like this: 1. space stations, spacecraft, internal and extravehicular maintenance terminals, these are all designed for human use and manipulation; 2. what’s the alternative, a creepy human-to-spider telepresence interface? and 3. humanoid space robots are cool and make fantastic marketing platforms.

A space humanoid, whether torso-only or legged (see: Robotnaut’s new legs), will keep astronauts safe, focused on tasks machines can’t do, and prevent space craziness from trying to hold a tiny pinwheel perfectly still next to an air vent for 2 hours — which, in fact, is slated to become one of Robonaut’s ISS jobs.

Make Sciencey Space Torsos not MurderDeathKillBots
As one is often want to point out, rather than finding ways to creatively dismember and vaporize each other, it would be nice if we humans could focus on the lovely technologies of space travel, habitation, and exploration. Nations competing over who can make the most useful and sexy space humanoid is an admirable step, so let the Global Robot Space Torso Arms Race begin!

“Torso Arms Race!“
Keepin’ it real, yo.

• • •

DLR’s Justin Tele-Operation Interface:

• • •

[JUSTIN TELE-OPERATION SITUATION — IEEE]

Robot Space Torso Projects:
[JUSTIN — GERMANY/DLR • FACEBOOK • TWITTER]
[ROBONAUT — U.S.A./NASA • FACEBOOK • TWITTER]
[SAR-400 — RUSSIA/ROSCOSMOS — PLASTIC PALS • ROSCOSMOS FACEBOOK]
[AILA — GERMANY/DAS DFKI]

This piece originally appeared at Anthrobotic.com on February 21, 2013.

]]>