Menu

Blog

Page 7851

Mar 31, 2019

This company wants to deliver a baby in space and prepare humanity for a life beyond Earth

Posted by in categories: biotech/medical, education, satellites

What happens when Earth’s resources run out? Well, if science fiction has taught us anything, it’s that humanity will seek a new and habitable planet somewhere in the cosmos on which to keep the species going in perpetuity. When that day comes, we’ll need a viable way to procreate and deliver children in the vastness of outer space.

Enter SpaceLife Origin, a one-of-a-kind tech company that is seeking to make it possible for humans to give birth in the vacuum of space by 2024, a goal titled “Mission Cradle.” While that is its ultimate goal, SpaceLife is also striving to become the first company to “safe-guard human ‘Seeds-of-Life’ in space [Mission Ark] by 2020 [and] make embryo conception in space feasible [Mission Lotus] by 2021,” according to its official website.

The gallery below offers a glimpse at the patent-pending “Ark” designs. Vials of human DNA will be protected within the radiation-shielded spheres that are to be kept on Earth and satellites surrounding the planet. SpaceLife Origin describes this as an insurance policy for the continuation of mankind in case a catastrophe hits and we need to leave in a hurry.

Read more

Mar 31, 2019

I ran across this post and thought it interesting

Posted by in category: mathematics

I am not too sure the math is solid, obviously, but the fact that its been shared over 100k times means people are paying attention and starting to think about the impact.

Read more

Mar 31, 2019

Artificial intelligence can predict premature death

Posted by in categories: neuroscience, robotics/AI

Summary: Machine learning significantly improves the accuracy of predicting premature deaths, from all causes, in a middle-aged population compared with more traditional models. Source: University.

Neuroscience News


Mar 31, 2019

Supercomputers help supercharge protein assembly

Posted by in categories: biotech/medical, supercomputing

Red blood cells are amazing. They pick up oxygen from our lungs and carry it all over our body to keep us alive. The hemoglobin molecule in red blood cells transports oxygen by changing its shape in an all-or-nothing fashion. Four copies of the same protein in hemoglobin open and close like flower petals, structurally coupled to respond to each other. Using supercomputers, scientists are just starting to design proteins that self-assemble to combine and resemble life-giving molecules like hemoglobin. The scientists say their methods could be applied to useful technologies such as pharmaceutical targeting, artificial energy harvesting, ‘smart’ sensing and building materials, and more.

Read more

Mar 31, 2019

DIY drone kits on sale with promo code

Posted by in category: drones

The kits teach key STEM concepts as you build.

Read more

Mar 31, 2019

Google is hosting a global contest to develop AI that’s beneficial for humanity

Posted by in categories: quantum physics, robotics/AI

The Quantum Flagship was first announced in 2016, and on 29 October, the commission announced the first batch of fund recipients. The 20 international consortia, each of which includes public research institutions as well as industry, will receive a total of €132 million over 3 years for technology-demonstration projects.


One of the most ambitious EU ‘Flagship’ schemes yet has picked 20 projects, aiming to turn weird physics into useful products.

Read more

Mar 31, 2019

The business of immortality

Posted by in categories: business, life extension

We’ve always wanted to live forever. But in 2019, the pursuit of immortality is big business, and Silicon Valley is at its epicenter. While the new, high-tech war on death is being led by the elite, it could wind up having big consequences for everyone else.


Inside Silicon Valley’s war on death.

Read more

Mar 31, 2019

Quantum optical cooling of nanoparticles

Posted by in categories: nanotechnology, particle physics, quantum physics

When a particle is completely isolated from its environment, the laws of quantum physics start to play a crucial role. One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature. Researchers at the University of Vienna, the Austrian Academy of Sciences and the Massachusetts Institute of Technology (MIT) are now one step closer to reaching this goal by demonstrating a new method for cooling levitated nanoparticles. They now publish their results in the renowned journal Physical Review Letters.

Tightly focused can act as optical “tweezers” to trap and manipulate tiny objects, from glass to living cells. The development of this method has earned Arthur Ashkin the last year’s Nobel prize in physics. While most experiments thus far have been carried out in air or liquid, there is an increasing interest for using to trap objects in ultra-high vacuum: such isolated particles not only exhibit unprecedented sensing performance, but can also be used to study fundamental processes of nanoscopic heat engines, or phenomena involving large masses.

A key element in these research efforts is to obtain full control over the particle motion, ideally in a regime where the laws of quantum physics dominate its behavior. Previous attempts to achieve this, have either modulated the optical tweezer itself, or immersed the particle into additional light fields between highly reflecting mirror configurations, i.e. optical cavities.

Continue reading “Quantum optical cooling of nanoparticles” »

Mar 30, 2019

Mark Zuckerberg: The Internet needs new rules. Let’s start in these four areas

Posted by in categories: cybercrime/malcode, internet

I’ve spent most of the past two years focusing on issues like harmful content, elections integrity and privacy. I think it’s important to define what roles we want companies and governments to play in taking on these challenges, so I wrote this op-ed laying out how regulation can help.


Tech nology is a major part of our lives, and companies such as Facebook have immense responsibilities. Every day, we make decisions about what speech is harmful, what constitutes political advertising, and how to prevent sophisticated cyberattacks. These are important for keeping our community safe. But if we were starting from scratch, we wouldn’t ask companies to make these judgments alone.

I believe we need a more active role for governments and regulators. By updating the rules for the Internet, we can preserve what’s best about it — the freedom for people to express themselves and for entrepreneurs to build new things — while also protecting society from broader harms.

Continue reading “Mark Zuckerberg: The Internet needs new rules. Let’s start in these four areas” »

Mar 30, 2019

An artificial neuron implemented on an actual quantum processor

Posted by in categories: information science, quantum physics, robotics/AI

Artificial neural networks are the heart of machine learning algorithms and artificial intelligence. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt’s “perceptron”, but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a binary-valued perceptron, which shows exponential advantage in storage resources over alternative realizations. We experimentally test a few qubits version of this model on an actual small-scale quantum processor, which gives answers consistent with the expected results. We show that this quantum model of a perceptron can be trained in a hybrid quantum-classical scheme employing a modified version of the perceptron update rule and used as an elementary nonlinear classifier of simple patterns, as a first step towards practical quantum neural networks efficiently implemented on near-term quantum processing hardware.

Read more