Menu

Blog

Page 7390

Sep 26, 2019

Astrophysicists: There May Be Black Holes Orbiting Our Sun

Posted by in category: cosmology

In a mind-bending new paper, researchers suggest that there could be black holes orbiting the Sun, out past Pluto.


Scientists have long speculated that a “planet 9,” in orbit very far from the Sun, could explain why other bodies in our solar system have strange, hard-to-explain orbits.

Now, a pair of astrophysicists are suggesting a strange twist on that idea: that a black hole — or even a number of them — could be orbiting our Sun right now, way beyond Neptune.

Continue reading “Astrophysicists: There May Be Black Holes Orbiting Our Sun” »

Sep 26, 2019

Can We Redesign The Modern City With Synthetic Biology? Could We Grow Our Houses Instead Of Building Them?

Posted by in categories: bioengineering, biotech/medical, food, habitats, sustainability

Imagine waking up every morning in a house that is just as alive as you are. With synthetic biology, your future home could be a living, breathing marvel of nature and biotechnology. Yes, it’s a bold ambition. But this kind of visionary thinking could be the key to achieving sustainability for modern cities.

Our current homes and cities are severely outdated. Dr. Rachel Armstrong, a synthetic biologist and experimental architect, says, “All our current buildings have something in common: they’re built using Victorian technologies.” Traditional design, manufacturing, and construction processes demand huge amounts of energy and resources, but the resulting buildings give nothing back. To make our future sustainable, we need dynamic structures that give as much as they take. We need to build with nature, not against it.

In nature, everything is connected. For the world’s tallest trees—the California redwoods— their lives depend on their connection to each other as well as on a host of symbiotic organisms. Winds and rain batter the California coast, so redwoods weave their roots together for stability, creating networks that can stretch hundreds of miles. The rains also leach nutrients from the soil. But fungi fill the shortage by breaking down dead organic matter into food for the living. A secondary network of mycelia—the root-like structures of the fungi—entwine with the tree roots to transport nutrients, water, and chemical communications throughout the forest. What if our future cities functioned like these symbiotic networks? What if our future homes were alive?

Sep 26, 2019

A different kind of gravitational wave detector

Posted by in categories: cosmology, particle physics, quantum physics

Hidden deep in a basement at Stanford stands a 10-meter-tall tube, wrapped in a metal cage and draped in wires. A barrier separates it from the main room, beyond which the cylinder spans three stories to an apparatus holding ultra-cold atoms ready to shoot upward. Tables stocked with lasers to fire at the atoms—and analyze how they respond to forces such as gravity—fill the rest of the laboratory.

The tube is an , a custom-built device designed to study the wave nature of . According to quantum mechanics, atoms exist simultaneously as particles and waves. The Stanford instrument represents a model for an ambitious new instrument ten times its size that could be deployed to detect gravitational waves—minute ripples in spacetime created by energy dissipating from moving astronomical objects. The instrument also could shed light on another mystery of the universe: dark matter.

Stanford experimental physicists Jason Hogan and Mark Kasevich never intended for their device to be implemented this way. When Hogan began his graduate studies in Kasevich’s lab, he focused instead on testing gravity’s effects on atoms. But conversations with theoretical physicist Savas Dimopoulos, a professor of physics, and his graduate students—often lured downstairs by an espresso machine housed directly across the hall from Kasevich’s office—led them to start thinking about its utility as a highly .

Sep 26, 2019

Differentiating Stem Cells into Heart Muscle

Posted by in categories: biotech/medical, life extension

A recent review shows the current state of the industry with regards to using human pluripotent stem cells (hPSCs) to create cells that are useful for the study of, and therapies for, the human heart.

Pluripotent Stem Cells

Stem cells are the cells that form every other cell in the body, and adult humans naturally have native populations of stem cells to replace losses; the depletion of these reserves is stem cell exhaustion, which is one of the hallmarks of aging. To create stem cells from regular (somatic) cells, researchers use a technique called induced pluripotency, which creates induced pluripotent stem cells (iPSCs). However, purely naive, dedifferentiated pluripotent cells, which could create any cell in the body, are only of limited use and are not effective as a therapy. To form specific somatic cell lines, stem cells must first be differentiated into specific types.

Sep 26, 2019

Future Mars Habitat Concept

Posted by in categories: habitats, space

Click on photo to start video.

The Mars Homes That NASA Awarded $500k

Sep 26, 2019

Human Embryoid Research! — Dr. Deborah Gumucio, Ph.D — University of Michigan — ideaXme — Ira Pastor

Posted by in categories: 3D printing, aging, bioengineering, bioprinting, biotech/medical, complex systems, DNA, genetics, health, transhumanism

Sep 26, 2019

Soyuz Rocket Blasts Off to Station With Multinational Crew

Posted by in category: space

Three multinational crewmembers blasted off to the space station today aboard their Soyuz rocket. They will reach their docking port in less than six hours today. https://go.nasa.gov/2ncC1TC

Sep 26, 2019

Why Planet Earth Needs A Starfleet Academy

Posted by in category: space travel

The case for a present-day ‘Starfleet Academy’ as a global, non-governmental hothouse incubator for space exploration.

Sep 26, 2019

A stem-cell race that no one wins

Posted by in category: biotech/medical

Japan’s attractiveness to regenerative-medicine entrepreneurs is prompting other countries to look closely at its regulatory changes. There is undoubtedly a competition under way, and unless something is done, it risks becoming a race to the bottom.


Japan helped to bring stem-cell technology to the world. Its regulatory policies threaten its hard-won reputation.

Sep 26, 2019

A new non-fullerene acceptor for indoor solar energy applications

Posted by in categories: solar power, sustainability

Organic photovoltaic (OPV) cells, a third-generation solar cell technology that can convert solar energy into electricity, have been found to be more efficient than silicon cells under low light intensity indoor LED illumination. These cells have also shown great potential for powering low consumption, off-the grid electronics in indoor environments.

Despite their huge potential, the of OPV is currently limited by substantial losses in their open-circuit voltage. In addition, past studies suggest that when used for indoor illumination their is far from optimal.

In a quest to overcome these limitations, a team of researchers at the Chinese Academy of Sciences in China and Linköping University in Sweden have recently designed a non-fullerene acceptor for that could enable high-performance organic photovoltaic cells for indoor applications. This new acceptor, presented in a paper published in Nature Energy, can be blended with a polymer donor to obtain a photoactive layer with an absorption spectrum that matches that of indoor light sources.