Menu

Blog

Page 7232

Nov 14, 2019

Doctors Report First US Tests of Gene Editing for Cancer

Posted by in categories: bioengineering, biotech/medical, genetics

Doctors have reported on the first attempts in the United States to use gene editing to help patients fight cancer.

The doctors say one form of gene editing appeared to be safe when tested in three patients. But it is not yet known what long-term effects the method will have on cancer treatment or patient survival rates.

A gene editing tool called CRISPR/Cas9 was used in the tests, which were recently reported in a medical study. The method was discovered in recent years as a way to change the genetic material that make up a person’s DNA.

Nov 14, 2019

Rapidly compressing lead to planetary-core type pressures found to make it stronger than steel

Posted by in categories: materials, military

A combined team of researchers from Lawrence Livermore National Laboratory in the U.S. and Atomic Weapons Establishment in the U.K. has found that rapidly compressing lead to planetary-core type pressures makes it stronger than steel. In their paper published in the journal Physical Review Letters, the group describes how they managed to compress the metal so strongly without melting it.

Defining strength in a material is difficult. Strength can refer to a material’s ability withstand bending or breaking under certain conditions. Making things even more complicated is that the strength of any given material can change under varying conditions—such as when heat or compression are applied. In this new effort, the researchers showed just how difficult it can be to nail down how strong a material is—in this case, lead.

Lead is not very strong. Pressing a fingernail against a car’s battery terminal is enough to create indentations, for example. But the researchers with this new effort report that the metal can be strengthened considerably by exerting .

Nov 14, 2019

Phage therapy shows promise for alcoholic liver disease

Posted by in category: biotech/medical

Bacteriophages (phages) are viruses that specifically destroy bacteria. In the early 20th century, researchers experimented with phages as a potential method for treating bacterial infections. But then antibiotics emerged and phages fell out of favor. With the rise of antibiotic-resistant infections, however, researchers have renewed their interest in phage therapy. In limited cases, patients with life-threatening multidrug-resistant bacterial infections have been successfully treated with experimental phage therapy after all other alternatives were exhausted.

Researchers at University of California San Diego School of Medicine and their collaborators have now for the first time successfully applied phage therapy in mice for a condition that’s not considered a classic bacterial infection: alcoholic liver disease.

The study publishes November 13, 2019 in Nature.

Nov 14, 2019

Ebola vaccine approved in Europe, in landmark moment for global health

Posted by in categories: biotech/medical, health

After more than two decades of research, the world finally has an approved Ebola vaccine.

The European Commission granted marketing authorization to Merck’s vaccine, known as Ervebo, on Monday, less than a month after the European Medicines Agency recommended it be licensed. It is currently being used in the Democratic Republic of the Congo under a “compassionate use” or research protocol similar to a clinical trial.

“The European Commission’s marketing authorization of Ervebo is the result of an unprecedented collaboration for which the entire world should be proud,” Ken Frazier, Merck’s chairman and chief executive officer, said in a statement.

Nov 14, 2019

Zach Bitter runs 100-mile world record in 11 hours, 19 min

Posted by in category: futurism

U.S distance runner Zach Bitter set a 100-mile run world record in 11 hours, 19 minutes and 13 seconds at the Six Days in the Dome event in Milwaukee on Saturday. He ran 363 laps around the 442-meter track at the Pettit National Ice Center.

He averaged a mile pace of 6:48, which is faster than running a sub-three hour marathon. He ran the first 50 miles in five hours, 40 minutes and 38 seconds before completing the next 50 two minutes faster in five hours, 38 minutes and 35 seconds.

The previous record was 11 hours, 28 minutes and three seconds by Oleg Kharitonov in 2002. The 40-year-old from Manitowoc, Wis. set the American record for 100 miles when he ran a 11:40:55 in 2013.

Nov 14, 2019

This unusual new ransomware is going after servers

Posted by in category: cybercrime/malcode

PureLocker ransomware appears to have links to some of the most prolific cyber-criminal operations active in the world today.

Nov 14, 2019

The CDC has some surprisingly good news about antibiotic resistance

Posted by in category: biotech/medical

We may have made a small dent in the number of annual cases, but there are still hordes of microbes out there.

Nov 14, 2019

Engineering biomimetic microvascular meshes for subcutaneous islet transplantation

Posted by in categories: 3D printing, bioengineering, biotech/medical

To successfully engineer cell or tissue implants, bioengineers must facilitate their metabolic requirements through vascular regeneration. However, it is challenging to develop a broad strategy for stable and functional vascularization. In a recent report on Nature Communications, Wei Song and colleagues in the interdisciplinary departments of Biological and Environmental Engineering, Medicine, Mechanical and Aerospace Engineering, Clinical Sciences and Bioengineering in the U.S. described highly organized, biomimetic and resilient microvascular meshes. The team engineered them using controllable, anchored self-assembly methods to form microvascular meshes that are almost defect-free and transferrable to diverse substrates, for transplantation.

The scientists promoted the formation of functional blood vessels with a density as high as ~200 vessels per mm-2 within the subcutaneous space of SCID-Beige mice. They demonstrated the possibility of engineering microvascular meshes using human induced pluripotent stem-cell (iPSCs) derived (ECs). The technique opens a way to engineer patient-specific type 1 diabetes treatment by combining microvascular meshes for subcutaneous transplantation of rat islets in SCID-beige mice to achieve correction of chemically induced diabetes for 3 months.

Vasculature is an essential component of any organ or tissue, and vascular regeneration is critical to successfully bioengineer implants. For instance, during cell replacement therapy for type 1 diabetes (T1D), transplanted insulin producing cells rely on the vasculature to function and survive. Bioengineers often use vascular endothelial cells such as human umbilical vein endothelial cells (HUVECs) to spontaneously assemble into tubular structures within the extracellular matrix (ECM). But the resulting structures can be random, uncontrollable and less efficient for microvascular regeneration. Scientists have recently developed three-dimensional (3D) printing techniques to engineer controlled cellular constructs with embedded vessels. However, it remains challenging to 3D print resilient and transferrable, high-resolution, microvasculature.

Nov 14, 2019

Recovering ‘lost dimensions’ of images and video

Posted by in categories: biotech/medical, robotics/AI

MIT researchers have developed a model that recovers valuable data lost from images and video that have been “collapsed” into lower dimensions.

The model could be used to recreate video from motion-blurred images, or from new types of cameras that capture a person’s movement around corners but only as vague one-dimensional lines. While more testing is needed, the researchers think this approach could someday could be used to convert 2-D medical images into more informative—but more expensive—3D body scans, which could benefit medical imaging in poorer nations.

“In all these cases, the visual data has one dimension—in time or space—that’s completely lost,” says Guha Balakrishnan, a postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and first author on a paper describing the model, which is being presented at next week’s International Conference on Computer Vision. “If we recover that lost dimension, it can have a lot of important applications.”

Nov 14, 2019

Magnets sustainably separate mixtures of rare earth metals

Posted by in categories: chemistry, computing, economics, mobile phones

A new study describes a novel approach for purifying rare earth metals, crucial components of technology that require environmentally-damaging mining procedures. By relying on the metal’s magnetic fields during the crystallization process, researchers were able to efficiently and selectively separate mixtures of rare earth metals.

Seventy-five of the ’s 118 elements are carried in the pockets and purses of more than 100 million U.S. iPhone users every day. Some of these elements are abundant, like silicon in computer chips or aluminum for cases, but certain metals that are required for crisp displays and clear sounds are difficult to obtain. Seventeen elements known as are crucial components of many technologies but are not found in concentrated deposits, and, because they are more dispersed, require toxic and environmentally-damaging procedures to extract.

With the goal of developing better ways to recycle these metals, new research from the lab of Eric Schelter describes a new approach for separating mixtures of rare earth metals with the help of a . The approach, published in Angewandte Chemie International Edition, saw a doubling in separation performance and is a starting point towards a cleaner and more circular rare earth metals economy.