Menu

Blog

Page 6307

Jun 4, 2020

Apple Buys Canadian Start-Up To Help Improve Machine-Learning And AI

Posted by in category: robotics/AI

Technology giant Apple Inc. (NASDAQ: AAPL) has bought a small Canadian start-up company to help it improve machine-learning and artificial intelligence (AI).

Apple has purchased Waterloo, Ontario-based company Inductiv Inc., adding to more than a dozen AI-related acquisitions in recent years. Inductiv develops technology that uses AI to automate the task of identifying and correcting errors in data. Having clean data is important for machine learning, a popular and powerful type of artificial intelligence that helps software improve with less human intervention.

The engineering team from Inductiv joined Apple in recent weeks to work on Siri, machine learning and data science. The Inductiv acquisition is part of Apple’s broader machine-learning strategy. Apple has been upgrading the underlying technology that goes into the Siri digital assistant and other AI-powered products.

Jun 4, 2020

Funded By Kevin Durant, Founded By Ex-Google Engineers: Meet The Drone Startup Scoring Millions In Government Surveillance Contracts

Posted by in categories: drones, government, surveillance

Famous basketball player Kevin Durant co-funded $200 million-valued Skydio, which has quietly been getting millions in federal government surveillance money, whilst spending thousands on lobbying senators and the president’s office.

Jun 4, 2020

Music Synchronizes the Brains of Performers and Their Audience

Posted by in categories: media & arts, neuroscience

The more people enjoy music, the more similar their brain activity is to that of the musician.

Jun 4, 2020

Brain Represents Optical Illusion as Delayed Reality

Posted by in category: neuroscience

Summary: Researchers report the same subset of neurons encode actual and illusory flow motion, supporting the concept Jan Purkinje proposed 150 years ago, that “illusions contain visual truth”.

Source: SfN.

A study of humans and monkeys published in Journal of Neuroscience has found the same subset of neurons encode actual and illusory complex flow motion. This finding supports, at the level of single neurons, what the Czech scientist Jan Purkinje surmised 150 years ago: “Illusions contain visual truth.”

Jun 4, 2020

Astronomers Just Narrowed Down The Source of Those Powerful Radio Signals From Space

Posted by in category: space

Strange, powerful signals from deep space called fast radio bursts are slippery little suckers.

Most of them just flash once, a mysterious huge spike in the radio data out of nowhere, lasting just milliseconds at most. They can’t be predicted, and because they’re so brief, they’re incredibly hard to trace.

Hard; but not impossible. Less than a year ago, for the first time, astronomers announced they traced one of these mysterious one-off signals to its source galaxy. Since then, their techniques have allowed them to trace three more.

Jun 4, 2020

Superlubricity and nanotechnology

Posted by in categories: biotech/medical, engineering, nanotechnology

Achieving near-zero friction in commercial and industrial applications will be game-changing from tiny microelectromechanical systems that will never wear out, to oil-free bearings in industrial equipment, to much more efficient engines and giant wind turbines scavenging energy even in low wind conditions. Superlubricity offers promising solutions to overcome lubrication challenges in various areas of nanotechnology including micro/nano-electromechanical systems (MEMS/NEMS), water transport control, biomedical engineering, atomic force microscopy (AFM), aerospace and wind energy applications, as well as other electronic devices. It is one of the most promising properties of functional nanomaterials for energy saving applications.

Jun 4, 2020

We Just Got Even More Evidence Mars Once Had a Ring

Posted by in category: space

Mars — glorious, dusty, complex Mars — may once have been even more dazzling. New research provides even more evidence that a rubbly ring once circled the Red Planet.

The new clue lies in Deimos, the smaller of the two Martian moons. It’s orbiting Mars at a slight tilt with respect to the planet’s equator — and this could very well be the result of the gravitational shenanigans caused by a planetary ring.

Ring systems aren’t actually all that uncommon. When you think about ring systems, your mind immediately leaps to Saturn, no doubt — but half the planets in the Solar System have rings, Saturn, Uranus, Neptune, and Jupiter. Dwarf planet Haumea, and centaurs Chiron and Chariklo also have rings.

Jun 4, 2020

Microsoft is Replacing its Employees With AI Software

Posted by in category: robotics/AI

Dozens of journalists have been sacked after Microsoft decided to replace them with artificial intelligence software.

Staff who maintain the news homepages on Microsoft’s MSN website and its Edge browser – used by millions of Britons every day – have been told that they will be no longer be required because robots can now do their jobs.

Around 27 individuals employed by PA Media – formerly the Press Association – were told on Thursday that they would lose their jobs in a month’s time after Microsoft decided to stop employing humans to select, edit and curate news articles on its homepages.

Jun 4, 2020

Stadium-sized asteroid heading near Earth this week

Posted by in categories: asteroid/comet impacts, existential risks

But it may be taller than the Empire State Building, which is 1,454 feet tall. The asteroid is estimated to be between 820 feet and 1,870 feet in diameter.

The asteroid was first spotted nearly two decades ago and is called 2002 NN4.

Seek and Destroy: How NASA Protects Us from Thousands of Asteroids.

Jun 4, 2020

Light turned into exotic Laughlin matter

Posted by in categories: particle physics, quantum physics

Solving a difficult physics problem can be surprisingly similar to assembling an interlocking mechanical puzzle. In both cases, the particles or pieces look alike, but can be arranged into a beautiful structure that relies on the precise position of each component (Fig. 1). In 1983, the physicist Robert Laughlin made a puzzle-solving breakthrough by explaining the structure formed by interacting electrons in a device known as a Hall bar1. Although the strange behaviour of these electrons still fascinates physicists, it is not possible to simulate such a system or accurately measure the particles’ ultrashort time and length scales. Writing in Nature, Clark et al.2 report the creation of a non-electronic Laughlin state made of composite matter–light particles called polaritons, which are easier to track and manipulate than are electrons.

To picture a Laughlin state, consider a Hall bar, in which such states are usually observed (Fig. 2a). In these devices, electrons that are free to move in a two-dimensional plane are subjected to a strong magnetic field perpendicular to the plane. In classical physics, an electron at any position will start moving along a circular trajectory known as a cyclotron orbit, the radius of which depends on the particle’s kinetic energy. In quantum mechanics, the electron’s position will still be free, but its orbital radius — and, therefore, its kinetic energy — can be increased or decreased only in discrete steps. This feature leads to large sets of equal-energy (energy-degenerate) states called Landau levels. Non-interacting electrons added to the lowest-energy Landau level can be distributed between the level’s energy-degenerate states in many different ways.

Adding repulsive interactions between the electrons constrains the particles’ distribution over the states of the lowest Landau level, favouring configurations in which any two electrons have zero probability of being at the same spot. The states described by Laughlin have exactly this property and explain the main features of the fractional quantum Hall effect, whereby electrons in a strong magnetic field act together to behave like particles that have fractional electric charge. This work earned Laughlin a share of the 1998 Nobel Prize in Physics. Laughlin states are truly many-body states that cannot be described by typical approximations, such as the mean-field approximation. Instead, the state of each particle depends on the precise state of all the others, just as in an interlocking puzzle.