Menu

Blog

Page 5

Apr 17, 2024

Boston Dynamics’ Atlas humanoid robot goes electric

Posted by in category: robotics/AI

Atlas lies motionless in a prone position atop interlocking gym mats. The only soundtrack is the whirring of an electric motor. It’s not quiet, exactly, but it’s nothing compared to the hydraulic jerks of its ancestors.

As the camera pans around the robot’s back, its legs bend at the knees. It’s a natural movement, at first, before crossing into an uncanny realm, like something out of a Sam Raimi movie. The robot, which appeared to be lying on its back, has effectively switched positions with this clever bit of leg rotation.

Continue reading “Boston Dynamics’ Atlas humanoid robot goes electric” »

Apr 17, 2024

Paper page — MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding

Posted by in category: futurism

Meta announces MA-LMM

Memory-augmented large multimodal model for long-term video understanding.

With the success of large language models (#LLMs), integrating the vision model into LLMs to build vision-language #foundation models has gained much more interest…

Continue reading “Paper page — MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding” »

Apr 17, 2024

In World First, Scientists Share What Was Almost Certainly a Conversation with a Humpback Whale

Posted by in category: futurism

Humpback whales have very complicated vocalizing behaviors, but scientists were able to call an adult female over and have a short convo.

Apr 17, 2024

Wired to learn and remember

Posted by in category: neuroscience

The role of the spinal cord is often simplified to that of a simple relay station, carrying messages between the brain and the body.


New research unveils how spinal cord nerve cells can learn and remembercompletely independent of the brain.

Apr 17, 2024

SPARDA: A Programmable Nucleic Acid Targeting Technology Like CRISPR

Posted by in categories: biotech/medical, innovation

An innovative programmable tool for targeting nucleic acids has been created, utilizing a prokaryotic immune defense system—and it is not CRISPR-Cas. Russian Academy of Sciences researchers have successfully re-engineered prokaryotic Argonautes (pAgos) to utilize RNA guides for locating nucleic acid sequences. These systems have been modified to form a complex with effector nucleases.

The researchers employed a two-component system known as SPARDA (short prokaryotic Argonaute, DNase, and RNase-associated) to effectively identify DNA sequences with a notable level of sensitivity and induce collateral nuclease activity. SPARDA and other concise pAgos systems that encode diverse effectors have the potential to offer a novel programmable tool for the field of biotechnology.

The research article “DNA-targeting short Argonautes complex with effector proteins for collateral nuclease activity and bacterial population immunity” was published in Nature Microbiology.

Apr 17, 2024

Quantum electronics: Charge travels like light in bilayer graphene

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

An international research team led by the University of Göttingen has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be “switched” on and off, which has potential for developing tiny, energy-efficient transistors—like the light switch in your house but at a nanoscale.

Apr 17, 2024

Apple keeps looking for new places to make its stuff that aren’t China

Posted by in category: futurism

Tim Cook said Apple will “look at” manufacturing in Indonesia following a meeting with its president in Jakarta.

Apr 17, 2024

COVID-19 Research: Study reveals New Details about Potentially Deadly Inflammation

Posted by in categories: biological, biotech/medical

A recent USC study provides new information about why SARS-CoV-2, the virus behind the COVID-19 pandemic, may elicit mild symptoms at first but then, for a subset of patients, turn potentially fatal a week or so after infection. The researchers showed that distinct stages of illness correspond with the coronavirus acting differently in two different populations of cells.

The study, published in Nature Cell Biology, may provide a roadmap for addressing cytokine storms and other excessive immune reactions that drive serious COVID-19.

The team found that when SARS-CoV-2 infects its first-phase targets, cells in the lining of the lung, two viral proteins circulate within those cells—one that works to activate the immune system and a second that, paradoxically, blocks that signal, resulting in little or no inflammation.

Apr 17, 2024

Exploding Stars are Rare but Emit Torrents of Radiation—one close enough to Earth could Threaten Life on the Planet

Posted by in categories: cosmology, nuclear energy

Stars like the sun are remarkably constant. They vary in brightness by only 0.1% over years and decades, thanks to the fusion of hydrogen into helium that powers them. This process will keep the sun shining steadily for about 5 billion more years, but when stars exhaust their nuclear fuel, their deaths can lead to pyrotechnics.

The sun will eventually die by growing large and then condensing into a type of star called a white dwarf. But stars more than eight times more massive than the sun die violently in an explosion called a supernova.

Supernovae happen across the Milky Way only a few times a century, and these violent explosions are usually remote enough that people here on Earth don’t notice. For a dying star to have any effect on life on our planet, it would have to go supernova within 100 light years from Earth.

Apr 17, 2024

Powering the future: Advanced Energy Harvesting for loT Devices

Posted by in categories: energy, engineering, internet

Researchers have developed a high-performance energy management unit (EMU) that significantly boosts the efficiency of electrostatic generators for Internet of Things (IoT) applications. This breakthrough addresses the challenge of high impedance mismatch between electrostatic generators and electronic devices, unlocking new possibilities for ambient energy harvesting.

Electrostatic generators have emerged as a promising solution for powering low-power devices in Internet of Things (IoT) networks, utilizing energy from environmental sources such as wind and human motion. Despite their potential, the effectiveness of these generators has been hampered by an impedance mismatch when connected to electronic devices, leading to low energy utilization efficiency.

A study published in the journal Microsystems & Nanoengineering introduces an efficient energy management unit (EMU) designed to significantly boost the power efficiency of electrostatic generators for IoT devices. This innovation addresses the longstanding challenge of impedance mismatch and propels forward the potential for using environmental energy harvesting within the IoT domain.

Page 5 of 11,000First23456789Last