Menu

Blog

Page 5132

Jul 5, 2021

The observation of 1D Coulomb drag between adjacent QSH edges separated by an air gap

Posted by in categories: energy, quantum physics

Two important factors limiting Moore’s Law are power consumption and Coulomb interactions are interactions between electric charges that follow Coloumb’s law, an electrodynamics theory.

These interactions can be a major challenge for the development of nanoelectronic circuits. Quantum spin Hall (QSH) insulators are particularly promising materials for the development of low-power electronics, yet so far the impact of Coulomb interactions on nanocircuits made by these materials have only been examined theoretically, rather than experimentally.

Researchers at Nanjing University and Peking University have recently observed one-dimensional (1D) Coulomb drag between adjacent QSH edges separated by an air gap. Their paper, published in Nature Electronics, highlights the potential of QSH effects for suppressing the adverse effects of Coulomb interactions on the performance of nanocircuits.

Jul 5, 2021

Deep sea robots will let us find millions of shipwrecks, says man who discovered Titanic

Posted by in categories: robotics/AI, transportation

A revolutionary new class of amphibious vehicle will transform the search for lost vessels on the ocean floor, says marine archaeologist Dr Robert Ballard.

Jul 5, 2021

NIST maps out the migration to post-quantum cryptography

Posted by in categories: encryption, information science, mapping, quantum physics

“Because nothing can protect hardware, software, applications or data from a quantum-enabled adversary, encryption keys and data will require re-encrypting with a quantum-resistant algorithm and deleting or physically securing copies and backups.” v/@preskil… See More.


To ease the disruption caused by moving away from quantum-vulnerable cryptographic code, NIST has released a draft document describing the first steps of that journey.

Jul 5, 2021

Cornell University program aims to end world hunger in 10 years

Posted by in categories: food, robotics/AI

Can we end world hunger by 2030? Thanks to a new program, the data for it is all there.

Jul 5, 2021

An Artificial Network Kept on The ‘Edge of Chaos’ Acts Much Like a Human Brain

Posted by in categories: nanotechnology, robotics/AI

Researchers have demonstrated how to keep a network of nanowires in a state that’s right on what’s known as the edge of chaos – an achievement that could be used to produce artificial intelligence (AI) that acts much like the human brain does.

The team used varying levels of electricity on a nanowire simulation, finding a balance when the electric signal was too low when the signal was too high. If the signal was too low, the network’s outputs weren’t complex enough to be useful; if the signal was too high, the outputs were a mess and also useless.

“We found that if you push the signal too slowly the network just does the same thing over and over without learning and developing. If we pushed it too hard and fast, the network becomes erratic and unpredictable,” says physicist Joel Hochstetter from the University of Sydney and the study’s lead author.

Jul 5, 2021

Mavic 2 Drone Cage makes ‘previously impossible operations possible’

Posted by in category: drones

As Ross Embleton, the guy who designed Mavic 2 Drone Cage for Heliguy, points out:

Cages are becoming an incredibly important drone accessory, helping to increase flight safety and drone protection. Our customers wanted an affordable, collision-proof cage for Mavic 2 drones; a series that is reliable, popular, lightweight, and small enough to carry out internal inspections. The cage opens new doors for enterprise users. It allows them to operate safely and capture quality data, with greater, 360-degree protection.

London Fire Brigade (LFB), one of the largest firefighting and rescue organizations in the world, has endorsed the Mavic 2 Drone Cage, saying it makes “previously impossible operations possible.”

Jul 5, 2021

Astronomers Capture Cosmic Hand Hitting a Wall

Posted by in categories: particle physics, space

Watch as the blast wave from an exploded star moves at nearly 9 million miles per hour. Astronomers captured this movement by combining data spanning 14 years from NASA’s Chandra X-ray Observatory. This hand-shaped structure is a nebula of energy and particles blown by a pulsar left behind aft.

Jul 5, 2021

Axions Could Be the Fossil of the Universe Astrophysicists Have Been Waiting For

Posted by in categories: cosmology, education, evolution, particle physics

Finding the hypothetical particle axion could mean finding out for the first time what happened in the Universe a second after the Big Bang, suggests a new study published in Physical Review D.

How far back into the Universe’s past can we look today? In the electromagnetic spectrum, observations of the Cosmic Microwave Background — commonly referred to as the CMB — allow us to see back almost 14 billion years to when the Universe cooled sufficiently for protons and electrons to combine and form neutral hydrogen. The CMB has taught us an inordinate amount about the evolution of the cosmos, but photons in the CMB were released 400000 years after the Big Bang making it extremely challenging to learn about the history of the universe prior to this epoch.

To open a new window, a trio of theoretical researchers, including Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Principal Investigator, University of California, Berkeley, MacAdams Professor of Physics and Lawrence Berkeley National Laboratory senior faculty scientist Hitoshi Murayama, Lawrence Berkeley National Laboratory physics researcher and University of California, Berkeley, postdoctoral fellow Jeff Dror (now at University of California, Santa Cruz), and UC Berkeley Miller Research Fellow Nicholas Rodd, looked beyond photons, and into the realm of hypothetical particles known as axions, which may have been emitted in the first second of the Universe’s history.

Jul 5, 2021

A Nanowire Network That Mimics the Brain Could Inspire New Designs in AI

Posted by in categories: biological, nanotechnology, robotics/AI

“What’s so exciting about this result is that it suggests that these types of nanowire networks can be tuned into regimes with diverse, brain-like collective dynamics, which can be leveraged to optimize information processing,” said Zdenka Kuncic from the University of Sydney in a press release.

Today’s deep neural networks already mimic one aspect of the brain: its highly interconnected network of neurons. But artificial neurons behave very differently than biological ones, as they only carry out computations. In the brain, neurons are also able to remember their previous activity, which then influences their future behavior.

This in-built memory is a crucial aspect of how the brain processes information, and a major strand in neuromorphic engineering focuses on trying to recreate this functionality. This has resulted in a wide range of designs for so-called “memristors”: electrical components whose response depends on the previous signals they have been exposed to.

Jul 5, 2021

Black Holes, Quantum Entanglement and the No-Go Theorem

Posted by in categories: computing, cosmology, quantum physics

New research shows that there are problems even quantum computers might never be able to solve.