Page 4

Sep 29, 2023

Artificial Intelligence Improves Brain Tumor Diagnosis

Posted by in categories: biotech/medical, robotics/AI

Neurosurgeons can leave the operating room more confident today than ever before about their patient’s brain tumor diagnosis, thanks to the integration of a new system that employs optical imaging and artificial intelligence that are making brain tumor diagnosis quicker and more accurate. This technology is allowing them to quickly see diagnostic tissue and tumor margins in near-real time.

For the full story, visit:

Continue reading “Artificial Intelligence Improves Brain Tumor Diagnosis” »

Sep 29, 2023

Making a Beamline for Deep UV Spectroscopy

Posted by in category: futurism

By using a pair of offset beams, researchers are able to generate femtosecond UV pulses that can be aimed directly into a target as a spectroscopic probe.

Sep 29, 2023

A new highly precise measurement of the hypertriton lifetime

Posted by in category: particle physics

A hypertriton is a tritium nucleus in which a neutron is replaced by a so-called Lambda hyperon. This type of hypernucleus was first discovered in the 1950s has since been the key focus of numerous studies.

The ALICE collaboration, a large research group that studies the collisions of nuclei inside CERN’s large hadron collider (LHC) in Switzerland, recently measured the lifetime of a hypertriton with remarkable precision. Their paper, published in Physical Review Letters, is a further step forward toward understanding the unique properties of these fascinating nuclear complexes.

“As the first and lightest hypernucleus (i.e., a nucleus that includes a baryon with at least one strange quark) ever identified, the hypertriton holds a special place in ,” Maximiliano Puccio, part of the ALICE collaboration, told

Sep 29, 2023

Milestone for novel atomic clock: X-ray laser shows possible route to substantially increased precision time measurement

Posted by in categories: chemistry, particle physics

An international research team has taken a decisive step toward a new generation of atomic clocks. At the European XFEL X-ray laser, the researchers have created a much more precise pulse generator based on the element scandium, which enables an accuracy of one second in 300 billion years—that is about a thousand times more precise than the current standard atomic clock based on cesium. The team presents its success in the journal Nature.

Atomic clocks are currently the world’s most accurate timekeepers. These clocks have used electrons in the atomic shell of chemical elements, such as cesium, as a pulse generator in order to define the time. These electrons can be raised to a higher energy level with microwaves of a known frequency. In the process, they absorb the .

An atomic clock shines microwaves at cesium atoms and regulates the frequency of the radiation such that the absorption of the microwaves is maximized; experts call this a resonance. The quartz oscillator that generates the microwaves can be kept so stable with the help of resonance that cesium clocks will be accurate to within one second within 300 million years.

Sep 29, 2023

Antimatter embraces Earth, falling downward like normal matter

Posted by in category: physics

For those still holding out hope that antimatter levitates rather than falls in a gravitational field, like normal matter, the results of a new experiment are a dose of cold reality.

Physicists studying antihydrogen—an anti-proton paired with an antielectron, or positron—have conclusively shown that gravity pulls it downward and does not push it upward.

At least for antimatter, antigravity doesn’t exist.

Sep 29, 2023

New model describes synchronized cilia movement driven by border regions

Posted by in category: futurism

What do the crowd at a football stadium, the feet of a centipede, and the inside of your lungs have in common? All of these systems show the same specific kind of organization, as recently discovered by a group of scientists from MPI-DS.

The wave in a stadium looks like a pattern traveling across the tiers. Similarly, the legs of a centipede move in canon with illusory waves sweeping along its entire length. On a , tiny hairs in our lungs called wave together to transport mucus. This serves as a first line of defense against invading pathogens.

To create a synchronized and efficient wave, cilia need to accurately coordinate their beating motion. Unlike watching their and the coordinating the centipede’s legs, cilia have no such intelligent control system.

Sep 29, 2023

A search for links between two of the universe’s most spectacular phenomena has come up empty—for now

Posted by in categories: cosmology, physics

Every so often, astronomers glimpse an intense flash of radio waves from space—a flash that lasts only instants but puts out as much energy in a millisecond as the sun does in a few years. The origin of these “fast radio bursts” is one of the greatest mysteries in astronomy today.

There is no shortage of ideas to explain the cause of the bursts: a catalog of current theories shows more than 50 potential scenarios. You can take your pick from highly magnetized , collisions of incredibly dense stars or many more extreme or exotic phenomena.

How can we figure out which theory is correct? One way is to look for more information about the bursts, using other channels: specifically, using ripples in the fabric of the universe called .

Sep 29, 2023

Ultrafast quantum simulation of large-scale quantum entanglement

Posted by in categories: computing, particle physics, quantum physics

A research group led by Professor Kenji Ohmori at the Institute for Molecular Science, National Institutes of Natural Sciences are using an artificial crystal of 30,000 atoms aligned in a cubic array with a spacing of 0.5 micron, cooled to near absolute zero temperature. By manipulating the atoms with a special laser light that blinks for 10 picoseconds, they succeeded in executing quantum simulation of a model of magnetic materials.

Their novel “ultrafast quantum computer” scheme demonstrated last year was applied to quantum simulation. Their achievement shows that their novel “ultrafast ” is an epoch-making platform, as it can avoid the issue of external noise, one of the biggest concerns for quantum simulators. The “ultrafast quantum simulator” is expected to contribute to the design of functional materials and the resolution of social problems.

Their results were published online in Physical Review Letters.

Sep 29, 2023

Octopuses Used in Research Could Receive Same Protections as Monkeys

Posted by in category: ethics

I would toss in Crows.

For the first time in the U.S., research with cephalopods might require approval by an ethics committee.

Sep 29, 2023

NASA New Horizons to Continue Exploring Outer Solar System

Posted by in categories: energy, space

NASA has announced an updated plan to continue New Horizons’ mission of exploration of the outer solar system.

Beginning in fiscal year 2025, New Horizons will focus on gathering unique heliophysics data, which can be readily obtained during an extended, low-activity mode of operations.

While the science community is not currently aware of any reachable Kuiper Belt object, this new path allows for the possibility of using the spacecraft for a future close flyby of such an object, should one be identified. It also will enable the spacecraft to preserve fuel and reduce operational complexity while a search is conducted for a compelling flyby candidate.

Page 4 of 9,83212345678Last