Menu

Blog

Page 17

Mar 26, 2024

Researchers Design Foundation AI Models for Use in Pathology

Posted by in categories: biotech/medical, robotics/AI

Artificial intelligence is poised to transform the practice of medicine through the design and deployment of AI models that can detect, diagnose, and render prognosis for a disease more rapidly than most human physicians can, and with similar or superior accuracy.

So-called foundation models — trained on vast amounts of unlabeled data and usable in multiple clinical contexts for different purposes with minimal tweaking — offer a particularly tantalizing promise to reshape diagnosis and treatment.

Get more HMS news here.

Mar 26, 2024

Micro-Lisa: Making a mark with novel nano-scale laser writing

Posted by in categories: biological, chemistry, nanotechnology, sustainability

Now Flinders University researchers have discovered a light-responsive, inexpensive sulfur-derived receptive to low power, visible light lasers—which promises a more affordable and safer production method in nanotech, chemical science and patterning surfaces in biological applications.

Details of the novel system have just been published in Angewandte Chemie International Edition, featuring a laser-etched version of the famous “Mona Lisa” painting and micro-Braille printing even smaller than a pin head.

“This could be a way to reduce the need for expensive, specialized equipment, including high-power lasers with hazardous radiation risk, while also using more sustainable materials. For instance, the key polymer is made from low-cost elemental sulfur, an industrial byproduct, and either cyclopentadiene or dicyclopentadiene,” says Matthew Flinders Professor of Chemistry Justin Chalker, from the Flinders University.

Mar 26, 2024

Using mode-locked lasers to realize and study non-Hermitian topological physics

Posted by in category: physics

Mode-locked lasers are advanced lasers that produce very short pulses of light, with durations ranging from femtoseconds to picoseconds. These lasers are widely used to study ultrafast and nonlinear optical phenomena, but they have also proved useful for various technological applications.

Researchers at California Institute of Technology have recently been exploring the potential of mode-locked lasers as platforms to study topological phenomena. Their paper, published in Nature Physics, outlines the potential of these lasers for studying and realizing new non-Hermitian topological physics, with various potential applications.

“The idea of utilizing topological robustness and topological protection for photonic devices has attracted substantial attention in the past decade, yet whether such behaviors can provide substantial practical benefits remains unclear,” Alireza Marandi, lead author of the paper, told Phys.org.

Mar 26, 2024

Examining the delicate balance of lepton flavors

Posted by in category: particle physics

In a talk at the ongoing Rencontres de Moriond conference, the ATLAS collaboration presented the result of its latest test of a key principle of the Standard Model of particle physics known as lepton flavor universality. The precision of the result is the best yet achieved by a single experiment in decays of the W boson and surpasses that of the current experimental average.

Mar 26, 2024

Scientists on the hunt for evidence of quantum gravity’s existence at the South Pole

Posted by in categories: particle physics, quantum physics, space

Several thousand sensors distributed over a square kilometer near the South Pole are tasked with answering one of the large outstanding questions in physics: does quantum gravity exist? The sensors monitor neutrinos—particles with no electrical charge and almost without mass—arriving at the Earth from outer space. A team from the Niels Bohr Institute (NBI), University of Copenhagen, has contributed to developing the method that exploits neutrino data to reveal if quantum gravity exists.

If as we believe, quantum gravity does indeed exist, this will contribute to unite the current two worlds in physics. Today, classical physics describes the phenomena in our normal surroundings such as gravity, while the atomic world can only be described using .

The unification of quantum theory and gravitation remains one of the most outstanding challenges in fundamental physics. It would be very satisfying if we could contribute to that end, says Tom Stuttard, Assistant Professor at NBI.

Mar 26, 2024

First observation of photons-to-taus in proton–proton collisions

Posted by in category: physics

In March 2024, the CMS collaboration announced the observation of two photons creating two tau leptons in proton–proton collisions. It is the first time that this process has been seen in proton–proton collisions, which was made possible by using the precise tracking capabilities of the CMS detector. It is also the most precise measurement of the tau’s anomalous magnetic moment and offers a new way to constrain the existence of new physics.

Mar 26, 2024

Sleeping supermassive black holes awakened briefly by shredded stars

Posted by in category: cosmology

A new investigation into an obscure class of galaxies known as Compact Symmetric Objects, or CSOs, has revealed that these objects are not entirely what they seem. CSOs are active galaxies that host supermassive black holes at their cores. Out of these monstrous black holes spring two jets traveling in opposite directions at nearly the speed of light. But in comparison to other galaxies that boast fierce jets, these jets do not extend out to great distances—they are much more compact.

For many decades, astronomers suspected that CSOs were simply young and that their jets would eventually travel out to greater distances. Now, reporting in three different papers in The Astrophysical Journal, a Caltech-led team of researchers has concluded that CSOs are not young but rather lead relatively short lives.

Continue reading “Sleeping supermassive black holes awakened briefly by shredded stars” »

Mar 26, 2024

New nearby mini-Neptune exoplanet discovered

Posted by in category: space

An international team of astronomers reports the discovery of a new mini-Neptune exoplanet orbiting a nearby star. The newfound alien world, designated TOI-4438 b is about 2.5 times larger than the Earth. The finding was detailed in a paper published March 14 on the pre-print server arXiv.

Mar 26, 2024

Music and genomes: Beethoven’s genes put to the test

Posted by in categories: biotech/medical, genetics, media & arts

To what extent are exceptional human achievements influenced by genetic factors? This question, dating back to the early days of human genetics, seems to be easier to address today as modern molecular methods make it possible to analyze DNA of individuals throughout history. But how reliable are the answers in this day and age?

Mar 26, 2024

Quantum Light Droplets Unveil New Realms of Macroscopic Complexity

Posted by in categories: particle physics, quantum physics

Scientists have advanced the field by stabilizing exciton-polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.

Researchers from CNR Nanotec in Lecce and the Faculty of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically tailor complexes of quantum droplets of light that became bound together into macroscopic coherent states. The research underpins a new method to simulate and explore interactions between artificial atoms in a highly reconfigurable manner, using optics. The results have been published in the prestigious journal Nature Physics.

Quantum Simulation Technologies

Page 17 of 10,884First1415161718192021Last