Menu

Blog

Page 14

Sep 13, 2024

Services for modeling the effects of nuclear weapons on agricultural systems

Posted by in categories: computing, food, government, military, policy

This is a U.S. General Services Administration Federal Government computer system that is “FOR OFFICIAL USE ONLY.” This system is subject to monitoring. Individuals found performing unauthorized activities are subject to disciplinary action including criminal prosecution.

This system contains Controlled Unclassified Information (CUI). All individuals viewing, reproducing or disposing of this information are required to protect it in accordance with 32 CFR Part 2002 and GSA Order CIO 2103.2 CUI Policy.

Sep 13, 2024

Research finds sex-based differences in how brains handle threats

Posted by in categories: biotech/medical, health, neuroscience, sex

A new study has uncovered significant differences in how male and female mice process threats, even as they exhibit similar behavioural responses. The discovery suggests that including both male and female subjects in neuroscience research will lead to more accurate conclusions and ultimately better health outcomes. Understanding the influence of sex on brain function can help explain why males and females develop certain psychiatric disorders at different rates or with different symptoms, the researchers said. ‘Unless we thoughtfully and rigorously integrate sex into biomedical research, a huge amount of the population may be underserved by scientific knowledge,’ said McGill University Associate Professor and Canada Research Chair in Behavioural Neurogenomics Rosemary Bagot, who led the study. ‘Our work shows that sex is an important variable to consider, even if initial observations don’t necessarily show clear sex differences,” said Bagot. “If males and females are using different brain circuits to solve similar problems, they may be differently vulnerable to stress and respond differently to treatments.’ How brain circuits process threats and cues The study focused on two related brain circuits and their roles in processing information about threats and the cues that predict them. The researchers trained mice to recognize a sound that signalled a threat and another sound that meant safety. By observing brain activity, the team saw how communication between different brain areas processed these signals. Then, they temporarily turned off each brain connection to see how it affected the mice’s reactions, helping them understand how the brain handles threats. ‘We found that even though male and female mice respond similarly to threats, the brain circuits underlying these responses are not the same,’ Bagot said. For female mice, a connection between two specific brain areas (the medial prefrontal cortex and the nucleus accumbens) played a key role. The study found that in male mice, a different connection (between the ventral hippocampus and the nucleus accumbens) was more important for handling the same situation. It was previously assumed that similar behavior meant similar brain function. Now, the researchers are exploring how sex impacts brain circuits in processing threats, focusing on the role of sex hormones and different learning strategies. This research is supported by funding from CIHR. About the study Sex-biased neural encoding of threat discrimination in nucleus accumbens afferents drives suppression of reward behavior by Jessie Muir, Eshaan Iyer et al., was published in Nature Neuroscience.

Sep 13, 2024

Stretchable, wearable device lights up an LED using only the warmth of your skin

Posted by in categories: energy, wearables

One of the drawbacks of fitness trackers and other wearable devices is that their batteries eventually run out of juice. But what if in the future, wearable technology could use body heat to power itself?

UW researchers have developed a flexible, durable electronic prototype that can harvest energy from body heat and turn it into electricity that can be used to power small electronics, such as batteries, sensors or LEDs. This device is also resilient — it still functions even after being pierced several times and then stretched 2,000 times.

Continue reading “Stretchable, wearable device lights up an LED using only the warmth of your skin” »

Sep 13, 2024

Scientists Discover Dark Electrons: A Hidden Quantum State in Solid Matter

Posted by in categories: energy, quantum physics

If you had a flashlight with you and directed it at a blank wall you would expect it to give a straight line projection however you will find the lit up wall forming rings where the flash light is pointing at. This occurs due to interference and constructive as the light wave forms combine or destructively when the waves structure is out of phase. This occurs when the two waves are in phase with each other thereby producing constructive interference which brought about a bright region. When they do not occur, destructive interference is experienced thus causing the light to fade. Mathematically if S and N waves are 1,800 out of phase the interference actually nulls the signal completely.

Although, light is the most familiar interference, the concept of Interference is not restricted to it. Electrons can also interfere when they have juxtaposable different energy, this leads to the formation of the ‘‘dark electrons’’, electrons in ‘‘dark state’’ not visible by spectroscopic equipment.

Until recently, it was believed that such dark electrons can not be present in solids materials. The problem was that in the solid matter electrons are packed very closely together and thus it was thought to be virtually impossible to reach such ‘perfectly different energies’. Still, the research work conducted by a team from South Korea has revealed that these dark states do exist in condensed matter. This finding, published in Nature Physics can change how quantum physics is perceived.

Sep 13, 2024

Combining existing sensors with machine learning algorithms improves robots’ intrinsic sense of touch

Posted by in categories: cyborgs, information science, robotics/AI

A team of roboticists at the German Aerospace Center’s Institute of Robotics and Mechatronics finds that combining traditional internal force-torque sensors with machine-learning algorithms can give robots a new way to sense touch.

In their study published in the journal Science Robotics, the group took an entirely new approach to give robots a that does not involve artificial skin.

Continue reading “Combining existing sensors with machine learning algorithms improves robots’ intrinsic sense of touch” »

Sep 13, 2024

The magnetic storm on Earth has become strong

Posted by in category: futurism

Она повысилась до уровня G3.

Sep 13, 2024

Materials Found to Be Surprisingly Transparent to Orbital Currents

Posted by in categories: futurism, materials

Orbital currents are the lesser-known cousins of spin currents. Both involve an alignment of angular momentum. But spin currents are carried by spin-polarized electrons, while orbital currents are carried by electrons in orbitals having the same angular momentum. Like their spin counterparts, orbital currents could be useful for transmitting information in so-called orbitronic devices, but researchers had expected that these currents would not travel well across material interfaces. Now Igor Lyalin and Roland Kawakami from Ohio State University have measured the flow of orbital currents across selected materials placed in multilayer structures. They find, surprisingly, that the transport of orbital currents is as good or better than the transport of spin currents for most of the sampled materials.

Orbital currents can be generated via the so-called orbital Hall effect—a surface magnetization effect that was predicted 20 years ago but directly detected only in 2023 (see Synopsis: Detection of the Orbital Hall Effect). Interest in orbital currents is growing, as they could be more effective than spin currents at switching the orientation of magnetic layers in data-storage devices.

To study orbital current transport, Lyalin and Kawakami fabricated structures consisting of chromium and nickel layers, separated by a thin spacer. For the spacer material, they tested nonmagnetic metals, ferromagnetic metals, and antiferromagnetic insulators. The researchers generated an orbital current by applying a voltage to the chromium layer, and they measured how much of this current flowed through the structures by observing a magnetization change in the nickel. They found that 12 of the 15 spacer materials transported orbital currents more efficiently than spin currents—a result that could be good news for developing future orbitronic devices, Kawakami says.

Sep 13, 2024

Quantum Chip Cuts Unintended Signals

Posted by in categories: computing, quantum physics

A 25-qubit quantum processor architecture reduces the stray signals that can cause errors and is suitable for scaling up.

Sep 13, 2024

Imaging Antiferromagnetic Domains

Posted by in category: materials

A simple light microscopy setup can map the micrometer-scale domains of a potentially useful class of magnetic materials.

Sep 13, 2024

Light Could Drive Cooling Cycle in Ferroelectric Materials

Posted by in category: materials

Ultraviolet photons induce potassium niobate to behave like a potent solid-state refrigerant, according to new calculations.

Claudio Cazorla of the Polytechnic University of Catalonia in Spain and his collaborators have used a suite of numerical methods to discover that the archetypal ferroelectric material, potassium niobate (KNO), also exhibits a photocaloric effect: In response to ultraviolet light, KNO reversibly absorbs heat [1]. Because the effect is large and works at a wide range of temperatures, including room temperature, KNO could serve as the working medium for new cooling devices.

KNO owes its ferroelectric and photocaloric effects to its perovskite crystal structure, which features a niobium ion surrounded by an octahedral cage of oxygen ions. At low temperatures, the niobium ion is offset from the cage’s center, which induces an electric polarization (the ferroelectric effect). Above 700 K, KNO adopts a nonpolar configuration as its most stable phase.

Page 14 of 11,730First1112131415161718Last