Page 13

Sep 29, 2023

Older mouse brains rejuvenated by protein found in young blood

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

A protein involved in wound healing can improve learning and memory in ageing mice1.

Platelet factor 4 (PF4) has long been known for its role in promoting blood clotting and sealing broken blood vessels. Now, researchers are wondering whether this signalling molecule could be used to treat age-related cognitive disorders such as Alzheimer’s disease.

“The therapeutic possibilities are very exciting,” says geneticist and anti-ageing scientist David Sinclair at Harvard University in Boston, Massachusetts, who was not involved in the research. The study was published on 16 August in Nature.

Continue reading “Older mouse brains rejuvenated by protein found in young blood” »

Sep 29, 2023

New findings show how the brain prepares to make choices during decision-making

Posted by in categories: biotech/medical, neuroscience

Free will?

Neuroscientists and psychologists have been trying for decades to better understand how humans make decisions, in the hope to devise more effective interventions to promote healthy and beneficial lifestyle choices. Two brain regions that have been linked to decision-making are the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC).

Researchers at University of California, Berkeley (UC Berkeley), have been conducting extensive research focusing on these two areas of the brain and exploring their involvement in . In a recent paper published in Nature Neuroscience, they presented interesting new findings that could shed light on the through which the brain prepares to make choices.

Continue reading “New findings show how the brain prepares to make choices during decision-making” »

Sep 29, 2023

Circumcision Permanently Alters the Brain

Posted by in category: neuroscience

The data indicated that circumcision affected most intensely the portions of the victim’s brain associated with reasoning, perception and emotions.

Sep 29, 2023

A new breakthrough in obesity research allows you to lose fat while eating all you want

Posted by in categories: biotech/medical, food, genetics, neuroscience

This is a significant development that brings hope to the one billion individuals with obesity worldwide. Researchers led by Director C. Justin LEE from the Center for Cognition and Sociality (CCS) within the Institute for Basic Science (IBS) have discovered new insights into the regulation of fat metabolism. The focus of their study lies within the star-shaped non-neuronal cells in the brain, known as ‘astrocytes’. Furthermore, the group announced successful animal experiments using the newly developed drug ‘KDS2010’, which allowed the mice to successfully achieve weight loss without resorting to dietary restrictions.

The complex balance between food intake and energy expenditure is overseen by the hypothalamus in the brain. While it has been known that the neurons in the lateral hypothalamus are connected to fat tissue and are involved in fat metabolism, their exact role in fat metabolism regulation has remained a mystery. The researchers discovered a cluster of neurons in the hypothalamus that specifically express the receptor for the inhibitory neurotransmitter ‘GABA (Gamma-Aminobutyric Acid)’. This cluster has been found to be associated with the α5 subunit of the GABAA receptor and was hence named the GABRA5 cluster.

In a diet-induced obese mouse model, the researchers observed significant slowing in the pacemaker firing of the GABRA5 neurons. Researchers continued with the study by attempting to inhibit the activity of these GABRA5 neurons using chemogenetic methods. This in turn caused a reduction in heat production (energy consumption) in the brown fat tissue, leading to fat accumulation and weight gain. On the other hand, when the GABRA5 neurons in the hypothalamus were activated, the mice were able to achieve a successful weight reduction. This suggests that the GABRA5 neurons may act as a switch for weight regulation.

Sep 29, 2023

Brain cells living on the edge

Posted by in category: neuroscience

A paper published in Nature Communications shows that when neurons are given information about the changing world around them (task-related sensory input) it changes how they behave, putting them on edge so that tiny inputs can then set off ‘avalanches’ of brain activity, supporting a theory known as the critical brain hypothesis.

The researchers, from Cortical Labs and The University of Melbourne, used DishBrain – a collection of 800,000 human neural cells learning to play Pong.

It is the strongest evidence to date in support of a controversial theory of how the human brain processes information.

Continue reading “Brain cells living on the edge” »

Sep 29, 2023

Chronic traumatic encephalopathy in young athletes

Posted by in categories: biotech/medical, health, neuroscience

In a study of brains from contact sport players who died before reaching 30, more than 40% had chronic traumatic encephalopathy, oXavier?

The findings confirm that CTE can occur even in young people, but more work is needed to determine how CTE relates to clinical symptoms.

Millions of people worldwide get repetitive head impacts through various activities. These can lead to chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disease that causes brain damage similar to that seen in Alzheimer’s disease. CTE has been reported in people as young as 17. The incidence of CTE in young people, however, is unknown.

Continue reading “Chronic traumatic encephalopathy in young athletes” »

Sep 29, 2023

Human Brain Project celebrates successful conclusion

Posted by in categories: robotics/AI, supercomputing

HBP researchers have employed highly advanced methods from computing, neuroinformatics and artificial intelligence in a truly integrative approach to understanding the brain as a multi-level system.

The EU-funded Human Brain Project (HBP) comes to an end in September and celebrates its successful conclusion today with a scientific symposium at Forschungszentrum Jülich (FZJ). The HBP was one of the first flagship projects and, with 155 cooperating institutions from 19 countries and a total budget of 607 million euros, one of the largest research projects in Europe. Forschungszentrum Jülich, with its world-leading brain research institute and the Jülich Supercomputing Centre, played an important role in the ten-year project.

“Understanding the complexity of the human brain and explaining its functionality are major challenges of brain research today”, says Astrid Lambrecht, Chair of the Board of Directors of Forschungszentrum Jülich. “The instruments of brain research have developed considerably in the last ten years. The Human Brain Project has been instrumental in driving this development — and not only gained new insights for brain research, but also provided important impulses for information technologies.”

Continue reading “Human Brain Project celebrates successful conclusion” »

Sep 29, 2023

Evolution wired human brains to act like supercomputers

Posted by in categories: evolution, mathematics, neuroscience, supercomputing

Now, scientists have a mathematical model that closely matches how the human brain processes visual information.

Scientists have confirmed that human brains are naturally wired to perform advanced calculations, much like a high-powered computer, to make sense of the world through a process known as Bayesian inference.

In a study published in the journal Nature Communications, researchers from the University of Sydney, University of Queensland and University of Cambridge developed a specific mathematical model that closely matches how human brains work when it comes to reading vision. The model contained everything needed to carry out Bayesian inference.

Sep 29, 2023

Fundamental process behind memory now captured live

Posted by in category: neuroscience

Researchers from the Netherlands Institute for Neuroscience have, for the first time, witnessed nerve plasticity in the axon in motion.

Our nerve cells communicate through rapid transmission of electrical signals known as action potentials. All action potentials in the brain start in one unique small area of the cell: the axon initial segment (AIS). This is the very first part of the axon, the long, thin extension of a nerve cell that transmits signals or impulses from one nerve cell to another. It acts as a control center where it is decided when an action potential is initiated before traveling further along the axon.

Previously, researchers made the surprising observation that plasticity also occurs at the AIS. Plasticity refers to the brain’s ability to create new connections and structures in order to scale the amount of electrical activity, which is crucial for learning and memory. AIS plasticity occurs during changes in brain network activity. The segment’s length can become shorter with excessive activity or longer with low activity. But how does this structure change, and how quickly does it happen? Amélie Fréal and Nora Jamann in the lab of Maarten Kole have, for the first time, observed in real-time how this adaptability functions within the axon and identified the molecular mechanisms behind this process.

Sep 29, 2023

Neuralink’s First-in-Human Clinical Trial is Open for Recruitment

Posted by in categories: biotech/medical, robotics/AI

Neural Link’s first-In-human clinical trials.

We are happy to announce that we’ve received approval from the reviewing independent institutional review board and our first hospital site to begin recruitment for our first-in-human clinical trial. The PRIME Study (short for Precise Robotically Implanted Brain-Computer Interface) – a groundbreaking investigational medical device trial for our fully-implantable, wireless brain-computer interface (BCI) – aims to evaluate the safety of our implant (N1) and surgical robot (R1) and assess the initial functionality of our BCI for enabling people with paralysis to control external devices with their thoughts.

During the study, the R1 Robot will be used to surgically place the N1 Implant’s ultra-fine and flexible threads in a region of the brain that controls movement intention. Once in place, the N1 Implant is cosmetically invisible and is intended to record and transmit brain signals wirelessly to an app that decodes movement intention. The initial goal of our BCI is to grant people the ability to control a computer cursor or keyboard using their thoughts alone.

Page 13 of 9,836First1011121314151617Last