Toggle light / dark theme

Using NASA’s Transiting Exoplanet Survey Satellite (TESS), an international team of astronomers have detected a new sub-Neptune exoplanet orbiting a bright G-type star. The newfound alien world, designated TOI-3493 b is more than three times larger and about nine times more massive than Earth. The finding was reported in a research paper published April 17 on the preprint server arXiv.

To date, TESS has identified more than 7,500 candidate exoplanets (TESS Objects of Interest, or TOI), of which 620 have been confirmed so far. Since its launch in April 2018, the satellite has been conducting a survey of about 200,000 of the brightest stars near the sun with the aim of searching for transiting exoplanets—ranging from small, rocky worlds to gaseous giants.

TOI-3493, also known as HD 119,355, is a star of spectral type G1/2 V at a distance of some 315 away. Recently, a group of astronomers led by Priyanka Chaturvedi of the Thuringia State Observatory Tautenburg in Germany, identified a transit signal in the light curve of TOI-3493 with TESS. The planetary nature of this signal was confirmed by follow-up observations using ground-based facilities.

McGill researchers have demonstrated something long assumed: that glances can transmit information about one’s mental state to others without a single word being exchanged. They speculate that this primal ability may have played a role in assuring the survival of human society at times when making a sound could have attracted predators.

The research is published in the journal Communications Psychology.

“Humans have a long history of living in complex groups and . It has been theorized that this has led our brains to develop a heightened ability to focus on social cues from faces, and especially from eyes,” said Jelena Ristic, a professor in McGill’s psychology department. She has been working in the field for over 20 years. “It’s a system that has evolved to support very quick exchanges of complex social information.”

Researchers from the University of Science and Technology of China (USTC) achieved the first direct laboratory observation of ion acceleration through reflection off laser-generated magnetized collisionless shocks. This observation demonstrates how ions gain energy by bouncing off supercritical shocks, central to the Fermi acceleration mechanism. The research is published in Science Advances.

Collisionless shocks are cosmic powerhouses responsible for accelerating charged particles to extreme energies. This acceleration involves particles repeatedly crossing fronts, gaining energy incrementally. However, how do particles initially gain enough energy to enter this cycle? Two competing theories, shock drift acceleration (SDA) and shock surfing acceleration (SSA), have emerged, but observational limitations in space and previous lab experiments have left the question unresolved.

This new experiment, conducted at China’s Shenguang-II laser facility, recreated a controlled astrophysical shock scenario. Researchers used high-energy lasers to generate a magnetized ambient plasma and a supersonic “piston” plasma. When the piston collided with the ambient plasma at speeds exceeding 400 km/s, it produced a supercritical quasi-perpendicular shock, similar to those observed near Earth.

Imagine if a plant in a farmer’s field could warn a grower that it needs water? Or if a farmer could signal to plants that dry weather lies ahead, thereby prompting the plants to conserve water?

It may sound extraordinary, but researchers at the Center for Research on Programmable Plant Systems (CROPPS) have taken a major step toward advancing such two-way communication with plants.

A new study, published in the Proceedings of the National Academy of Sciences, has solved a century-old conundrum of how plants internally signal stress. By understanding how plant communication systems work, the team may then begin to exploit those signals to create plants that can communicate with people and each other, and be programmed to respond to specific stressors.

Scientists have achieved a major milestone in the quest to understand high-temperature superconductivity in hydrogen-rich materials. Using electron tunneling spectroscopy under high pressure, the international research team led by the Max Planck Institute for Chemistry has measured the superconducting gap of H3S—the material that set the high-pressure superconductivity record in 2015 and serves as the parent compound for subsequent high-temperature superconducting hydrides.

The findings, published this week in Nature, provide the first direct microscopic evidence of in hydrogen-rich materials and an important step toward its scientific understanding.

Superconductors are materials that can carry electrical current without resistance, making them invaluable for technologies such as energy transmission and storage, magnetic levitation, and quantum computing.

Quantum messages sent across a 254-km telecom network in Germany represent the first known report of coherent quantum communications using existing commercial telecommunication infrastructure.

The demonstration, reported in Nature this week, suggests that quantum communications can be achieved in real-world conditions.

Quantum networks have the potential to enable , such as a quantum internet; quantum is one example of a theoretically secure communication technique.

Neutrinos, elusive fundamental particles, can act as a window into the center of a nuclear reactor, the interior of the Earth, or some of the most dynamic objects in the universe. Their tendency to change “flavors” may provide clues into the prominence of matter over antimatter in the universe or explain the existence of dark matter.

Physicists are particularly interested in proving the existence of “sterile” neutrinos. Their discovery would reveal a new form of matter that interacts only with gravity and could influence the evolution of the universe.

In a new study published in Physical Review Letters, a team of researchers from U.S. universities and national laboratories has set stringent limits on the existence and mass of sterile neutrinos. While they have yet to find the particles, they now know where not to look.

An exact expression for a key process needed in many quantum technologies has been derived by a RIKEN mathematical physicist and a collaborator. This could help to guide advances in quantum technologies.

Many emerging such as and quantum communication rely on .

Entanglement is the mysterious phenomenon whereby two or more particles become so closely interconnected that, no matter how great the distance between them, they exhibit quantum correlations that far exceed the mutual relations achievable in .

In the intricate world of quantum physics, where particles interact in ways that seem to defy the standard rules of space and time, lies a profound mystery that continues to captivate scientists: the nature of deconfined quantum critical points (DQCPs). These elusive critical phenomena break away from the conventional framework of physics, offering a fascinating glimpse into a realm where quantum matter behaves in ways that challenge our classical understanding of the fundamental forces shaping the universe.

A recent study, led by Professor Zi Yang Meng and co-authored by his Ph.D. student Menghan Song of HKU Department of Physics, in collaboration with researchers from the Chinese University of Hong Kong, Yale University, University of California, Santa Barbara, Ruhr-University Bochum and TU Dresden, has unraveled some of the secrets concealed within the entangled web of .

Their findings, recently published in Science Advances, push the boundaries of modern physics and offer a fresh perspective on how operates at these enigmatic junctures. The study not only deepens our understanding of quantum mechanics but also paves the way for future discoveries that could revolutionize technology, materials science, and even our understanding of the cosmos.

In new research published in Nature, Weizmann Institute scientists introduce a powerful tool to explore quantum phenomena—the cryogenic Quantum Twisting Microscope (QTM).

Using this pioneering instrument, researchers have observed—for the first time—the interactions between electrons and an exotic atomic vibration in twisted sheets of graphene, called a phason. These findings shed new light on the mysterious superconductivity and strange metallicity that emerge when graphene sheets are rotated to the magic angle.

The fundamental properties of materials depend critically on their underlying particles—the flow of electrons governs , and atomic lattice vibrations, termed phonons, drive heat conductivity. However, when electrons and phonons are coupled, remarkable new phenomena can emerge.