wearables – Lifeboat News: The Blog https://lifeboat.com/blog Safeguarding Humanity Mon, 11 Nov 2024 08:23:22 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 “Wearable” devices for cells https://lifeboat.com/blog/2024/11/wearable-devices-for-cells https://lifeboat.com/blog/2024/11/wearable-devices-for-cells#respond Mon, 11 Nov 2024 08:23:22 +0000 https://lifeboat.com/blog/2024/11/wearable-devices-for-cells

MIT researchers developed tiny wearable devices for cells that can snugly enfold neurons and neuronal processes without damaging the cell. These thin-film wearables, made from a soft polymer, could enable scientists to measure and modulate neurons at a subcellular level.

]]>
https://lifeboat.com/blog/2024/11/wearable-devices-for-cells/feed 0
Move Over Plastics: Revolutionary Soft, Sustainable Material Set To Transform Medical Devices and Wearable Tech https://lifeboat.com/blog/2024/11/move-over-plastics-revolutionary-soft-sustainable-material-set-to-transform-medical-devices-and-wearable-tech https://lifeboat.com/blog/2024/11/move-over-plastics-revolutionary-soft-sustainable-material-set-to-transform-medical-devices-and-wearable-tech#respond Sun, 10 Nov 2024 18:26:04 +0000 https://lifeboat.com/blog/2024/11/move-over-plastics-revolutionary-soft-sustainable-material-set-to-transform-medical-devices-and-wearable-tech

Step aside, hard and rigid materials — a new soft, sustainable electroactive material is here, ready to unlock new possibilities for medical devices, wearable technology, and human-computer interfaces.

Using peptides and a snippet of the large molecules in plastics, Northwestern University materials scientists have developed materials made of tiny, flexible nano-sized ribbons that can be charged just like a battery to store energy or record digital information. Highly energy efficient, biocompatible, and made from sustainable materials, the systems could give rise to new types of ultralight electronic devices while reducing the environmental impact of electronic manufacturing and disposal.

The study was recently published in the journal Nature.

]]>
https://lifeboat.com/blog/2024/11/move-over-plastics-revolutionary-soft-sustainable-material-set-to-transform-medical-devices-and-wearable-tech/feed 0
Artificial magnetic muscles can support tensile stresses up to 1,000 times their own weight https://lifeboat.com/blog/2024/11/artificial-magnetic-muscles-can-support-tensile-stresses-up-to-1000-times-their-own-weight https://lifeboat.com/blog/2024/11/artificial-magnetic-muscles-can-support-tensile-stresses-up-to-1000-times-their-own-weight#respond Sat, 09 Nov 2024 18:28:22 +0000 https://lifeboat.com/blog/2024/11/artificial-magnetic-muscles-can-support-tensile-stresses-up-to-1000-times-their-own-weight

A research team, led by Professor Hoon Eui Jeong from the Department of Mechanical Engineering at UNIST has introduced an innovative magnetic composite artificial muscle, showcasing an impressive ability to withstand loads comparable to those of automobiles. This material achieves a stiffness enhancement of more than 2,700 times compared to conventional systems. The study is published in Nature Communications.

Soft artificial muscles, which emulate the fluidity of human muscular motion, have emerged as vital technologies in various fields, including robotics, wearable devices, and . Their inherent flexibility allows for smoother operations; however, traditional materials typically exhibit limitations in rigidity, hindering their ability to lift substantial weights and maintain precise control due to unwanted vibrations.

To overcome these challenges, researchers have employed variable rigid materials that can transition between hard and soft states. Yet, the available range for stiffness modulation has remained constrained, along with inadequate mechanical performance.

]]>
https://lifeboat.com/blog/2024/11/artificial-magnetic-muscles-can-support-tensile-stresses-up-to-1000-times-their-own-weight/feed 0
New Discovery Paves The Way to Generating Energy From Body Heat https://lifeboat.com/blog/2024/11/new-discovery-paves-the-way-to-generating-energy-from-body-heat https://lifeboat.com/blog/2024/11/new-discovery-paves-the-way-to-generating-energy-from-body-heat#respond Thu, 07 Nov 2024 19:24:43 +0000 https://lifeboat.com/blog/2024/11/new-discovery-paves-the-way-to-generating-energy-from-body-heat

If you’ve ever seen yourself through a thermal imaging camera, you’ll know that your body produces lots of heat. This is in fact a waste product of our metabolism. Every square foot of the human body gives off heat equivalent to about 19 matches per hour.

Unfortunately, much of this heat simply escapes into the atmosphere. Wouldn’t it be great if we could harness it to produce energy? My research has shown this would indeed be possible. My colleagues and I are discovering ways of capturing and storing body heat for energy generation, using eco-friendly materials.

The goal is to create a device that can both generate and store energy, acting like a built-in power bank for wearable tech. This could allow devices such as smart watches, fitness trackers, or GPS trackers to run much longer, or even indefinitely, by harnessing our body heat.

]]>
https://lifeboat.com/blog/2024/11/new-discovery-paves-the-way-to-generating-energy-from-body-heat/feed 0
Research team uses the human body to power wearables — addresses major obstacle of conventional batteries https://lifeboat.com/blog/2024/11/research-team-uses-the-human-body-to-power-wearables-addresses-major-obstacle-of-conventional-batteries https://lifeboat.com/blog/2024/11/research-team-uses-the-human-body-to-power-wearables-addresses-major-obstacle-of-conventional-batteries#respond Wed, 06 Nov 2024 21:26:55 +0000 https://lifeboat.com/blog/2024/11/research-team-uses-the-human-body-to-power-wearables-addresses-major-obstacle-of-conventional-batteries

Future wearables won’t need to get under your skin.

]]>
https://lifeboat.com/blog/2024/11/research-team-uses-the-human-body-to-power-wearables-addresses-major-obstacle-of-conventional-batteries/feed 0
Soft Polymer Wireless Devices Can Gently Wrap Around Neurons https://lifeboat.com/blog/2024/11/soft-polymer-wireless-devices-can-gently-wrap-around-neurons https://lifeboat.com/blog/2024/11/soft-polymer-wireless-devices-can-gently-wrap-around-neurons#respond Wed, 06 Nov 2024 17:24:49 +0000 https://lifeboat.com/blog/2024/11/soft-polymer-wireless-devices-can-gently-wrap-around-neurons

A study presents battery-free, polymer-based wearable devices that wrap around neurons, allowing for real-time monitoring and modulation of cellular activity. This innovation aims to restore neuronal function in conditions like multiple sclerosis.

]]>
https://lifeboat.com/blog/2024/11/soft-polymer-wireless-devices-can-gently-wrap-around-neurons/feed 0
A “wearable” device for individual neurons can measure electrical activity in the brain https://lifeboat.com/blog/2024/11/a-wearable-device-for-individual-neurons-can-measure-electrical-activity-in-the-brain https://lifeboat.com/blog/2024/11/a-wearable-device-for-individual-neurons-can-measure-electrical-activity-in-the-brain#respond Wed, 06 Nov 2024 05:16:36 +0000 https://lifeboat.com/blog/2024/11/a-wearable-device-for-individual-neurons-can-measure-electrical-activity-in-the-brain

MIT researchers have developed a battery-free, subcellular-sized device made of polymer designed to measure and modulate a neuron’s electrical and metabolic activity. When the device is activated by light, it can gently wrap around the neuron cell’s axons and dendrites without damaging the cells.

Scientists want to inject thousands of these tiny wireless devices into a patient’s central nervous system and then actuate them noninvasively using light. The light would penetrate the tissue and allow precise control of the devices, and thereby restore function in cases of neuronal degradation like multiple sclerosis (MS).

The MIT researchers developed these thin-film devices from a azobenzene, a soft polymer that readily reacts to light. Thin sheets of azobenzene roll into a cylinder when exposed to light, which enables them to wrap around cells. Researchers can control the direction and diameter of the rolling by changing the intensity and polarization of the light, producing a microtube with a diameter smaller than one micrometer.

]]>
https://lifeboat.com/blog/2024/11/a-wearable-device-for-individual-neurons-can-measure-electrical-activity-in-the-brain/feed 0
Textile energy grid charges wirelessly, can transform wearables, eradicate battery needs https://lifeboat.com/blog/2024/11/textile-energy-grid-charges-wirelessly-can-transform-wearables-eradicate-battery-needs https://lifeboat.com/blog/2024/11/textile-energy-grid-charges-wirelessly-can-transform-wearables-eradicate-battery-needs#respond Tue, 05 Nov 2024 11:24:04 +0000 https://lifeboat.com/blog/2024/11/textile-energy-grid-charges-wirelessly-can-transform-wearables-eradicate-battery-needs

Researchers develop nanomaterial textiles for wireless power, allowing real-time data transmission without the need for bulky batteries.

]]>
https://lifeboat.com/blog/2024/11/textile-energy-grid-charges-wirelessly-can-transform-wearables-eradicate-battery-needs/feed 0
Murata Goes Flexible with Its Stretchable Printed Circuit Platform https://lifeboat.com/blog/2024/11/murata-goes-flexible-with-its-stretchable-printed-circuit-platform https://lifeboat.com/blog/2024/11/murata-goes-flexible-with-its-stretchable-printed-circuit-platform#respond Tue, 05 Nov 2024 01:22:25 +0000 https://lifeboat.com/blog/2024/11/murata-goes-flexible-with-its-stretchable-printed-circuit-platform

Murata is branching out from its usual ceramic components with the launch of flexible, stretchable electronics — a Stretchable Printed Circuit (SPC) platform it says is ideally positioned for wearable and medical devices.

In recent years, in the medical field, to make more accurate diagnoses, the…


Bendy, soft, stretchy devices target the wearable and medical markets.

]]>
https://lifeboat.com/blog/2024/11/murata-goes-flexible-with-its-stretchable-printed-circuit-platform/feed 0
MIT develops tiny devices to monitor and heal individual cells — restoring lost brain functions https://lifeboat.com/blog/2024/11/mit-develops-tiny-devices-to-monitor-and-heal-individual-cells-restoring-lost-brain-functions https://lifeboat.com/blog/2024/11/mit-develops-tiny-devices-to-monitor-and-heal-individual-cells-restoring-lost-brain-functions#respond Mon, 04 Nov 2024 17:23:59 +0000 https://lifeboat.com/blog/2024/11/mit-develops-tiny-devices-to-monitor-and-heal-individual-cells-restoring-lost-brain-functions

MIT’s new tiny wearables wrap around neurons to monitor or heal, opening new treatments for brain diseases like multiple sclerosis.

]]>
https://lifeboat.com/blog/2024/11/mit-develops-tiny-devices-to-monitor-and-heal-individual-cells-restoring-lost-brain-functions/feed 0