chemistry – Lifeboat News: The Blog https://lifeboat.com/blog Safeguarding Humanity Mon, 11 Nov 2024 08:29:15 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Scientists just got 1 step closer to creating a ‘superheavy’ element that is so big, it will add a new row to the periodic table https://lifeboat.com/blog/2024/11/scientists-just-got-1-step-closer-to-creating-a-superheavy-element-that-is-so-big-it-will-add-a-new-row-to-the-periodic-table https://lifeboat.com/blog/2024/11/scientists-just-got-1-step-closer-to-creating-a-superheavy-element-that-is-so-big-it-will-add-a-new-row-to-the-periodic-table#respond Mon, 11 Nov 2024 08:29:15 +0000 https://lifeboat.com/blog/2024/11/scientists-just-got-1-step-closer-to-creating-a-superheavy-element-that-is-so-big-it-will-add-a-new-row-to-the-periodic-table

Scientists have discovered a new way of creating superheavy elements by firing supercharged ion beams at dense atoms. The team believes this method could potentially help synthesize the hypothetical “element 120,” which would be heavier than any known element.

]]>
https://lifeboat.com/blog/2024/11/scientists-just-got-1-step-closer-to-creating-a-superheavy-element-that-is-so-big-it-will-add-a-new-row-to-the-periodic-table/feed 0
Bioinspired hydrogels harness sunlight: A step closer to artificial photosynthesis https://lifeboat.com/blog/2024/11/bioinspired-hydrogels-harness-sunlight-a-step-closer-to-artificial-photosynthesis https://lifeboat.com/blog/2024/11/bioinspired-hydrogels-harness-sunlight-a-step-closer-to-artificial-photosynthesis#respond Mon, 11 Nov 2024 04:23:41 +0000 https://lifeboat.com/blog/2024/11/bioinspired-hydrogels-harness-sunlight-a-step-closer-to-artificial-photosynthesis

Mimicking how plants convert sunlight into energy has long been a dream for scientists aiming to create renewable energy solutions. Artificial photosynthesis is a process that seeks to replicate nature’s method, using sunlight to drive chemical reactions that generate clean energy. However, creating synthetic systems that work as organically as natural photosynthesis has been a significant challenge until now.

]]>
https://lifeboat.com/blog/2024/11/bioinspired-hydrogels-harness-sunlight-a-step-closer-to-artificial-photosynthesis/feed 0
Frontiers: Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only https://lifeboat.com/blog/2024/11/frontiers-honeybees-have-been-helpful-insects-since-ancient-centuries-and-this-benefit-is-not-limited-to-being-a-honey-producer-only https://lifeboat.com/blog/2024/11/frontiers-honeybees-have-been-helpful-insects-since-ancient-centuries-and-this-benefit-is-not-limited-to-being-a-honey-producer-only#respond Sun, 10 Nov 2024 16:30:28 +0000 https://lifeboat.com/blog/2024/11/frontiers-honeybees-have-been-helpful-insects-since-ancient-centuries-and-this-benefit-is-not-limited-to-being-a-honey-producer-only

After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.

Bees are commercially beneficial insects that have been around since the Cretaceous age of the Mesozoic Era. They also help fertilize many different crops. Bees are helpful, but their capacity to administer excruciating and poisonous stings constitutes a risk. Thankfully, most honeybees are not hostile to people and only resort to violence if they perceive danger (Pucca et al., 2019). Apis mellifera is the most often used honeybee species for agricultural pollination globally. All bee products, particularly venom, and honey, have been used for centuries, and their medicinal properties have been described in holy writings such as the Bible and the Quran (Ali, 2024; Dinu et al., 2024). Bee venom (BV) treatment involves injecting honeybee venom into the human body to cure various ailments. For over 5,000 years, this technique has been used in complementary therapies.

]]>
https://lifeboat.com/blog/2024/11/frontiers-honeybees-have-been-helpful-insects-since-ancient-centuries-and-this-benefit-is-not-limited-to-being-a-honey-producer-only/feed 0
Can the mealworm be the answer to Africa’s plastic waste problem? https://lifeboat.com/blog/2024/11/can-the-mealworm-be-the-answer-to-africas-plastic-waste-problem https://lifeboat.com/blog/2024/11/can-the-mealworm-be-the-answer-to-africas-plastic-waste-problem#respond Sun, 10 Nov 2024 12:23:40 +0000 https://lifeboat.com/blog/2024/11/can-the-mealworm-be-the-answer-to-africas-plastic-waste-problem

In a paper published in Scientific Reports journal, the researchers report the potential of the lesser mealworm (the larvae of a darkling beetle species, known scientifically as Alphitobius), to consume plastic.


The icipe researchers tested the ability of the lesser mealworm to consume polystyrene, one of the major microplastics that is fast accumulating both in land and water bodies. Polystyrene waste comes from the commercial application of its most common form, styrofoam. This material is used in food storage containers, packaging of equipment, disposable plates and cups, and insulation in construction. Various methods, including chemical, thermal and mechanical, are used to recycle polystyrene. However, these approaches are expensive and they also produce toxic compounds that are harmful to human, environment and biodiversity.

“Our study showed that the mealworms can ingest close to 50% of the styrofoam. We aim to conduct further studies to understand the process through which mealworms consume polystyrene, and whether they gain any nutritional benefits from the material,” says Evalyne Ndotono, an icipe PhD scholar.

“We will also explore the mechanisms of the bacteria in the lesser mealworm in the degradation of plastic. We want to understand if the bacteria are inherent in the mealworms, or if they are a defence strategy acquired after feeding on plastic.”

Additionally, the scientists will research the ability of the lesser mealworm to degrade diverse types of plastics and to convert it into useful, safe products.

]]>
https://lifeboat.com/blog/2024/11/can-the-mealworm-be-the-answer-to-africas-plastic-waste-problem/feed 0
An easier-to-use technique for storing data in DNA is inspired by our cells https://lifeboat.com/blog/2024/11/an-easier-to-use-technique-for-storing-data-in-dna-is-inspired-by-our-cells https://lifeboat.com/blog/2024/11/an-easier-to-use-technique-for-storing-data-in-dna-is-inspired-by-our-cells#respond Sun, 10 Nov 2024 06:23:30 +0000 https://lifeboat.com/blog/2024/11/an-easier-to-use-technique-for-storing-data-in-dna-is-inspired-by-our-cells

The new method, published in Nature last week, is more efficient, storing 350 bits at a time by encoding strands in parallel. Rather than hand-threading each DNA strand, the team assembles strands from pre-built DNA bricks about 20 nucleotides long, encoding information by altering some and not others along the way. Peking University’s Long Qian and team got the idea for such templates from the way cells share the same basic set of genes but behave differently in response to chemical changes in DNA strands. “Every cell in our bodies has the same genome sequence, but genetic programming comes from modifications to DNA. If life can do this, we can do this,” she says.

Qian and her colleagues encoded data through methylation, a chemical reaction that switches genes on and off by attaching a methyl compound—a small methane-related molecule. Once the bricks are locked into their assigned spots on the strand, researchers select which bricks to methylate, with the presence or absence of the modification standing in for binary values of 0 or 1. The information can then be deciphered using nanopore sequencers to detect whether a brick has been methylated. In theory, the new method is simple enough to be carried out without detailed knowledge of how to manipulate DNA.

The storage capacity of each DNA strand caps off at roughly 70 bits. For larger files, researchers splintered data into multiple strands identified by unique barcodes encoded in the bricks. The strands were then read simultaneously and sequenced according to their barcodes. With this technique, researchers encoded the image of a tiger rubbing from the Han dynasty, troubleshooting the encoding process until the image came back with no errors. The same process worked for more complex images, like a photorealistic print of a panda.

]]>
https://lifeboat.com/blog/2024/11/an-easier-to-use-technique-for-storing-data-in-dna-is-inspired-by-our-cells/feed 0
Why AI could eat quantum computing’s lunch https://lifeboat.com/blog/2024/11/why-ai-could-eat-quantum-computings-lunch https://lifeboat.com/blog/2024/11/why-ai-could-eat-quantum-computings-lunch#respond Sat, 09 Nov 2024 22:29:46 +0000 https://lifeboat.com/blog/2024/11/why-ai-could-eat-quantum-computings-lunch

Rapid advances in applying artificial intelligence to simulations in physics and chemistry have some people questioning whether we will even need quantum computers at all.

]]>
https://lifeboat.com/blog/2024/11/why-ai-could-eat-quantum-computings-lunch/feed 0
Impacts That Formed The Moon May Be Buried Deep Within Earth https://lifeboat.com/blog/2024/11/impacts-that-formed-the-moon-may-be-buried-deep-within-earth https://lifeboat.com/blog/2024/11/impacts-that-formed-the-moon-may-be-buried-deep-within-earth#respond Sat, 09 Nov 2024 11:36:59 +0000 https://lifeboat.com/blog/2024/11/impacts-that-formed-the-moon-may-be-buried-deep-within-earth

Throughout their childhood, Earth and Theia lived in harmony but everything changed when gravitational disturbances attacked.

Scientists have proposed that two massive rock formations deep within Earth’s mantle, known as large low-shear velocity provinces (LLSVPs), might be the remnants of the protoplanet Theia, which collided with Earth 4.5 billion years ago to form the Moon. These formations, located beneath West Africa and the Pacific Ocean, are denser and chemically distinct from the surrounding mantle. Researchers are using new seismic and isotopic data to investigate whether Theia’s dense mantle survived and sank into Earth’s core. If true, this discovery could change our understanding of Earth’s structure and early history.

After reading the article, Marcus gained more than 529 upvotes with this comment: “I wonder where on Earth Theia hit. Is there even a way to determine this, or does the constant tectonic activity of Earth just erase that over time?” Don’t forget to share your thoughts about Theia and Earth’s mantle in the comment section below! For a long time, scientists have agreed that the Moon was formed after a protoplanet called Theia collided with the early Earth about 4.5 billion years ago. Now, a team of researchers has a new bold idea: The remains of Theia may be hidden in two massive layers of rock located deep within Earth’s mantle.

]]>
https://lifeboat.com/blog/2024/11/impacts-that-formed-the-moon-may-be-buried-deep-within-earth/feed 0
Breaking Atomic Barriers: The Race To Discover the World’s Heaviest Element https://lifeboat.com/blog/2024/11/breaking-atomic-barriers-the-race-to-discover-the-worlds-heaviest-element https://lifeboat.com/blog/2024/11/breaking-atomic-barriers-the-race-to-discover-the-worlds-heaviest-element#respond Sat, 09 Nov 2024 11:33:28 +0000 https://lifeboat.com/blog/2024/11/breaking-atomic-barriers-the-race-to-discover-the-worlds-heaviest-element

Advancements in nuclear physics suggest the possibility of discovering stable, superheavy elements.

Researchers have found an alternative way to produce atoms of the superheavy element livermorium. The new method opens up the possibility of creating another element that could be the heaviest in the world so far: number 120.

The search for new elements is driven by the goal of finding versions that are stable enough to exist beyond a fleeting moment. In nuclear physics, there is a concept known as the “island of stability”—a hypothetical region in the upper reaches of the periodic table where as-yet-undiscovered superheavy elements could potentially last longer than just a few seconds. Scientists are working to explore how far the stability of atomic nuclei can extend.

]]>
https://lifeboat.com/blog/2024/11/breaking-atomic-barriers-the-race-to-discover-the-worlds-heaviest-element/feed 0
AI training method can drastically shorten time for calculations in quantum mechanics https://lifeboat.com/blog/2024/11/ai-training-method-can-drastically-shorten-time-for-calculations-in-quantum-mechanics https://lifeboat.com/blog/2024/11/ai-training-method-can-drastically-shorten-time-for-calculations-in-quantum-mechanics#respond Sat, 09 Nov 2024 11:31:08 +0000 https://lifeboat.com/blog/2024/11/ai-training-method-can-drastically-shorten-time-for-calculations-in-quantum-mechanics

The close relationship between AI and highly complicated scientific computing can be seen in the fact that both the 2024 Nobel Prizes in Physics and Chemistry were awarded to scientists for devising AI for their respective fields of study. KAIST researchers have now succeeded in dramatically shortening the calculation time of highly sophisticated quantum mechanical computer simulations by predicting atomic-level chemical bonding information distributed in 3D space using a novel approach to teach AI.

]]>
https://lifeboat.com/blog/2024/11/ai-training-method-can-drastically-shorten-time-for-calculations-in-quantum-mechanics/feed 0
Chemists just broke a 100-year-old rule and say it’s time to rewrite the textbooks https://lifeboat.com/blog/2024/11/chemists-just-broke-a-100-year-old-rule-and-say-its-time-to-rewrite-the-textbooks https://lifeboat.com/blog/2024/11/chemists-just-broke-a-100-year-old-rule-and-say-its-time-to-rewrite-the-textbooks#respond Sat, 09 Nov 2024 11:27:28 +0000 https://lifeboat.com/blog/2024/11/chemists-just-broke-a-100-year-old-rule-and-say-its-time-to-rewrite-the-textbooks

UCLA chemists have found a big problem with a fundamental rule of organic chemistry that has been around for 100 years—it’s just not true. And they say, It’s time to rewrite the textbooks.

]]>
https://lifeboat.com/blog/2024/11/chemists-just-broke-a-100-year-old-rule-and-say-its-time-to-rewrite-the-textbooks/feed 0