Menu

Blog

Archive for the ‘wearables’ category: Page 4

Jan 7, 2024

New transistors based on monolayer black phosphorus and germanium arsenide

Posted by in categories: computing, wearables

Two-dimensional (2D) semiconducting materials have proved to be very promising for the development of various electronic devices, including wearables and smaller electronics. These materials can have significant advantages over their bulky counterparts, for instance retaining their carrier mobility irrespective of their reduced thickness.

Despite their promise for creating thin electronics, 2D semiconductors have so far only rarely been used to create monolayer transistors, thinner versions of the crucial electronic components used to modulate and amplify electrical current inside most existing devices. Most proposed monolayer transistors based on 2D semiconductors were created using a few carefully selected materials known to have relatively stable lattice structures, such as graphene, tungsten diselenide or molybdenum disulfide (MoS2).

Researchers at Hunan University, the Chinese Academy of Sciences and Wuhan University recently set out to develop new monolayer transistors using alternative 2D semiconducting materials that have so far been primarily used to create multi-layer transistors, including black phosphorus (BP) and germanium arsenide (GeAs). Their work is published in the journal Nature Electronics.

Jan 5, 2024

Harvard’s robot exosuit aids Parkinson’s patients walk without freezing

Posted by in categories: biotech/medical, cyborgs, robotics/AI, wearables

Researchers from Harvard SEAS and Boston University reveal its transformative effects, offering newfound mobility and independence for individuals with this debilitating condition.


The wearable tech successfully eliminates a common symptom called ‘gait freezing’ to restore smooth strides for Parkinson’s disease sufferers.

Jan 4, 2024

Researchers develop high-performance stretchable solar cells

Posted by in categories: chemistry, engineering, solar power, sustainability, wearables

With the market for wearable electric devices growing rapidly, stretchable solar cells that can function under strain have received considerable attention as an energy source. To build such solar cells, it is necessary that their photoactive layer, which converts light into electricity, shows high electrical performance while possessing mechanical elasticity. However, satisfying both of these two requirements is challenging, making stretchable solar cells difficult to develop.

A KAIST research team from the Department of Chemical and Biomolecular Engineering (CBE) led by Professor Bumjoon Kim announced the development of a new conductive polymer material that achieved both high electrical performance and elasticity while introducing the world’s highest-performing stretchable organic solar cell.

Figure 1. Chemical structure of the newly developed conductive polymer and performance of stretchable organic solar cells using the material. (Image: KAIST)

Dec 24, 2023

Using the human as a sensor for better health

Posted by in categories: biotech/medical, health, wearables

Amid a rise in the innovation of wearable technology, researchers are looking for ways to harness the adaptive sensing ability of the human body.

A recent University of Melbourne panel discussion covered the future of wearable sensors. Professor Graham Kerr, Bill Dimopoulos, Galen Gan and Professor Peter Lee considered the management of information generated from such technology and its interpretation for improving health.

Dec 13, 2023

The Emergence Of Smart Cities In The Digital Era

Posted by in categories: internet, nanotechnology, robotics/AI, security, sustainability, wearables

By Chuck Brooks


Realizing the potential of Smart Cities will require public-private cooperation and security by design.

The idea of smart cities is starting to take shape as the digital era develops. A city that has developed a public-private infrastructure to support waste management, energy, transportation, water resources, smart building technology, sustainability, security operations and citizen services is referred to as a “smart city”. Realizing the potential of Smart Cities will require public-private cooperation and security by design.

Continue reading “The Emergence Of Smart Cities In The Digital Era” »

Dec 11, 2023

Researchers Use Molecular Engineering To Improve Organic Solar Cell Efficiency

Posted by in categories: engineering, health, solar power, sustainability, wearables

Polymer solar cells, known for their light weight and flexibility, are ideal for wearable devices. Yet, their broader use is hindered by the toxic halogenated solvents required in their production. These solvents pose environmental and health risks, limiting the appeal of these solar cells. Alternative solvents, which are less toxic, unfortunately, lack the same solubility, necessitating higher temperatures and prolonged processing times.

This inefficiency further impedes the adoption of polymer solar cells. Developing a method to eliminate the need for halogenated solvents could significantly enhance the efficiency of organic solar cells, making them more suitable for wearable technology.

In a recently published paper, researchers outline how improving molecular interactions between the polymer donors and the small molecule acceptors using side-chain engineering can reduce the need for halogenated processing solvents.

Dec 11, 2023

AI and EEG Transform Silent Thoughts to Text

Posted by in categories: biotech/medical, cyborgs, robotics/AI, transhumanism, wearables

Summary: Researchers created a revolutionary system that can non-invasively convert silent thoughts into text, offering new communication possibilities for people with speech impairments due to illnesses or injuries.

The technology uses a wearable EEG cap to record brain activity and an AI model named DeWave to decode these signals into language. This portable system surpasses previous methods that required invasive surgery or cumbersome MRI scanning, achieving state-of-the-art EEG translation performance.

Continue reading “AI and EEG Transform Silent Thoughts to Text” »

Dec 11, 2023

New conductive, cotton-based fiber developed for smart textiles

Posted by in categories: materials, wearables

A single strand of fiber developed at Washington State University has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline.

The newly developed material showed good potential for wearable e-textiles. The WSU researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas, detailing their findings in the journal Carbohydrate Polymers.

“We have one fiber in two sections: one section is the conventional cotton: flexible and strong enough for everyday use, and the other side is the ,” said Hang Liu, WSU textile researcher and the study’s corresponding author. “The cotton can support the conductive material which can provide the needed function.”

Dec 8, 2023

Biotracking, Age Reversal & Other Advanced Health Technologies

Posted by in categories: biological, life extension, wearables

In the final episode of this season, Dr. David Sinclair and Matthew LaPlante focus on current and near-future technologies relevant to health and aging. In addition to discussing the utility of wearable sensors and biological age measurements, they highlight innovative research aimed at reversing biological age. The societal effects of therapies that successfully extend healthspan and/or lifespan are also considered. #DavidSinclair #Longevity #Aging

Dec 3, 2023

Long in the Bluetooth: Scientists develop a more Efficient way to Transmit Data between Our Devices

Posted by in categories: mobile phones, wearables

University of Sussex researchers have developed a more energy-efficient alternative to transmit data that could potentially replace Bluetooth in mobile phones and other tech devices. With more and more of us owning smart phones and wearable tech, researchers at the University of Sussex have found a more efficient way of connecting our devices and improving battery life. Applied to wearable devices, it could even see us unlocking doors by touch or exchanging phone numbers by shaking hands.

Professor Robert Prance and Professor Daniel Roggen, of the University of Sussex, have developed the use of electric waves, rather than electromagnetic waves, for a low-power way to transmit data at close range, while maintaining the high throughput needed for multimedia applications.

Bluetooth, Wifi, and 5G currently rely on electromagnetic modulation, a form of wireless technology which was developed over 125 years ago.

Page 4 of 6512345678Last