Menu

Blog

Archive for the ‘engineering’ category: Page 56

Oct 18, 2022

The Social Brain Ep.4: Brain Decoding: The Science of ‘Mind Reading’

Posted by in categories: engineering, neuroscience, science

Can scientists read your mind and figure out what you’re thinking just by looking at your brain? Well, sort of.

In this episode of The Social Brain with Taylor Guthrie (@The Cellular Republic) and I (@Sense of Mind) talk about a fascinating new area of cognitive neuroscience, called “brain decoding” as well as its counterpart, “brain encoding,” and related topics. It all centers on the question posed above and the future applications, some of which are scary while others are inspiring.

Continue reading “The Social Brain Ep.4: Brain Decoding: The Science of ‘Mind Reading’” »

Oct 14, 2022

Researchers resolve decades-long debate about shock-compressed silicon with unprecedented detail

Posted by in categories: engineering, physics

Silicon, an element abundant in Earth’s crust, is currently the most widely used semiconductor material and is important in fields like engineering, geophysics and plasma physics. But despite decades of studies, how the material transforms when hit with powerful shockwaves has been a topic of longstanding debate.

“One might assume that because we have already studied in so many ways there is nothing left to discover,” said Silvia Pandolfi, a researcher at the Department of Energy’s SLAC National Accelerator Laboratory. “But there are still some important aspects of its behavior that are not clear.”

Now, researchers at SLAC have finally put this controversy to rest, providing the first direct, high-fidelity view of how a single silicon crystal deforms during shock compression on nanosecond timescales. To do so, they studied the crystal with X-rays from SLAC’s Linac Coherent Light Source (LCLS) X-ray laser. The team published their results in Nature Communications on September 21st. What they learned could lead to more accurate models that better predict what will happen to certain materials in .

Oct 14, 2022

Generating New Materials

Posted by in categories: biotech/medical, engineering

Inspired by the way termites build their nests, scientists at the California Institute of Technology (Caltech) developed a framework to design new materials that mimic the fundamental rules hidden in nature’s growth patterns. The researchers demonstrated that by using these rules, it is possible to create materials designed with specific programmable properties.

The research was published in the journal Science on August 26. It was led by Chiara Daraio, G. Bradford Jones Professor of Mechanical Engineering and Applied Physics and Heritage Medical Research Institute Investigator.

“Termites are only a few millimeters in length, but their nests can stand as high as 4 meters—the equivalent of a human constructing a house the height of California’s Mount Whitney,” says Daraio. If you peer inside a termite nest you will see a network of asymmetrical, interconnected structures, similar to the interior of a sponge or a loaf of bread. Made of sand grains, dirt, dust, saliva, and dung, this disordered, irregular structure appears arbitrary. However, a termite nest is specifically optimized for stability and ventilation.

Oct 12, 2022

Battery tech breakthrough paves way for mass adoption of affordable electric car

Posted by in categories: energy, engineering, sustainability, transportation

A breakthrough in electric vehicle battery design has enabled a 10-minute charge time for a typical EV battery. The record-breaking combination of a shorter charge time and more energy acquired for longer travel range was announced today (Oct. 12) in the journal Nature.

“The need for smaller, faster-charging batteries is greater than ever,” said Chao-Yang Wang, the William E. Diefenderfer Professor of Mechanical Engineering at Penn State and lead author on the study. “There are simply not enough batteries and critical raw materials, especially those produced domestically, to meet anticipated demand.”

In August, California’s Air Resources Board passed an extensive plan to restrict and ultimately ban the sale of gasoline-powered cars within the state. By 2035, the largest auto market in the United States will effectively retire the internal combustion engine.

Oct 11, 2022

Aram Kradjian — Director, Research & Innovation, Jaguar Land Rover — Reimagining Future Of Mobility

Posted by in categories: engineering, government

Is Director, Research & Innovation, at Jaguar Land Rover (https://www.jaguarlandrover.com/innovation), where he is focused on heading the global research department, spearheading cutting edge research (collaborating with the tech industry, government, regulators and academia), as well as product design, innovation, and strategy, helping to drive the latest technologies and innovations into their products and services.

Aram also serves as a Visiting Professor in Technology Innovation at King’s College London.

Continue reading “Aram Kradjian — Director, Research & Innovation, Jaguar Land Rover — Reimagining Future Of Mobility” »

Oct 10, 2022

New system retrofits diesel engines to run on 90% hydrogen

Posted by in categories: energy, engineering, food, transportation

Engineers from UNSW Sydney have successfully converted a diesel engine to run as a hydrogen-diesel hybrid engine—reducing CO2 emissions by more than 85% in the process.

The team, led by Professor Shawn Kook from the School of Mechanical and Manufacturing Engineering, spent around 18 months developing the hydrogen-diesel direct injection dual-fuel system that means existing diesel engines can run using 90% hydrogen as fuel.

The researchers say that any diesel engine used in trucks and power equipment in the transportation, agriculture and mining industries could ultimately be retrofitted to the new hybrid system in just a couple of months.

Oct 7, 2022

New form of silicon could revolutionize semiconductor industry

Posted by in categories: engineering, nanotechnology

After a 10-year research study that started by accident and was met with skepticism, a team of Northeastern University mechanical engineers was able to synthesize highly dense, ultra-narrow silicon nanowires that could revolutionize the semiconductor industry. Their research appears in Nature Communications.

Yung Joon Jung, Northeastern professor of mechanical and industrial engineering, says it might have been his favorite research project.

“Everything is new, and it required a lot of perseverance,” says Jung, who specializes in engineering and application of nanostructure systems and previously studied carbon nanotubes.

Oct 7, 2022

Light-based therapy weakens antibiotic-resistant bacteria

Posted by in categories: biotech/medical, chemistry, engineering

Antibiotics are standard treatments for fighting dangerous bacterial infections. Yet the number of bacteria developing a resistance to antibiotics is increasing. Researchers from Texas A&M University and the University of São Paulo are overcoming this resistance with light.

The researchers tailored antimicrobial (aPDT)—a chemical reaction triggered by visible light—for use on strains. Results showed the treatment weakened to where low doses of current antibiotics could effectively eliminate them.

“Using aPDT in combination with antibiotics creates a synergy of interaction working together for a solution,” said Vladislav Yakovlev, University Professor in the Department of Biomedical Engineering at Texas A&M and co-director of the project. “It’s a step in the right direction against resistant bacteria.”

Oct 5, 2022

New cleaning technique boosts electronic and photonic prospects of aluminum nitride

Posted by in categories: computing, engineering

A group of researchers led by Cornell is unlocking the full potential of aluminum nitride—an important material for the advancement of electronics and photonics—thanks to the development of a surface cleaning technique that enables high-quality production.

The research was published Sept. 9 in the journal Science Advances. Graduate student Zexuan Zhang and research associate Yongjin Cho are the lead authors. The senior authors are Debdeep Jena and Huili Grace Xing, both professors of materials science and engineering and of electrical and computer engineering.

Aluminum nitride has gained significant research interest in the field of semiconductor materials as it provides an unmatched combination of high electrical resistivity and thermal conductivity, according to Zhang. The ceramic material is used as an electrically-insulating but thermally-conducting barrier in electronic devices, and due to its ability to operate at deep UV frequencies, it has great potential for use in light-emitting diodes and lasers.

Oct 5, 2022

Researchers pioneer nanoprinting electrodes for customized treatments of neurological disorders

Posted by in categories: 3D printing, biotech/medical, computing, engineering, nanotechnology, neuroscience

Carnegie Mellon University researchers have pioneered the CMU Array—a new type of microelectrode array for brain computer interface platforms. It holds the potential to transform how doctors are able to treat neurological disorders.

The ultra-high-density microelectrode (MEA), which is 3D-printed at the nanoscale, is fully customizable. This means that one day, patients suffering from epilepsy or limb function loss due to stroke could have personalized medical treatment optimized for their individual needs.

Continue reading “Researchers pioneer nanoprinting electrodes for customized treatments of neurological disorders” »

Page 56 of 238First5354555657585960Last